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ABSTRACT
Configurable software systems can be adapted or configured ac-
cording to a set of features to increase reuse and productivity. The
testing process is essential because configurations that fail may
potentially hurt user experience and degrade the reputation of a
project. However, testing configurable systems is very challenging
due to the number of configurations to run with each test, leading
to a combinatorial explosion in the number of configurations and
tests. Currently, several testing techniques and tools have been
proposed to deal with this challenge, but their potential practical
application remains mostly unexplored. To encourage the research
area on testing configurable systems, researchers and practitioners
should be able to try out their solutions in common datasets. In this
paper, we propose a dataset with 22 configurable software systems
and an extensive test suite. Moreover, we report failures found in
these systems and source code metrics to allow evaluating candi-
date solutions. We hope to engage the community and stimulate
new and existing approaches to the problem of testing configurable
systems.

KEYWORDS
Testing Configurable Systems; Software Product Line;
ACM Reference Format:
Fischer Ferreira, Markos Viggiato, Maurício Souza, and Eduardo Figueiredo.
2018. Testing Configurable Software Systems: The Failure Observation Chal-
lenge. In SPLC ’20: INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT
LINE CONFERENCE, October 19–23, 2020, Montréal, Canada. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3302333.3302344

1 INTRODUCTION
Configurable systems are software systems that can be adapted or
configured according to a set of features (configuration options).
Configurable systems offer numerous options (or features) to fit
specific customer needs [4, 32, 36], and developers may activate or
deactivate options to address a diversity of deployment contexts
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and usages. To ensure that all configurations correctly compile,
build, and run, developers usually spend considerable effort testing
their systems because configurations that fail may hurt potential
users and degrade the reputation of a project [15, 38].

Software testing is a key component for ensuring that all config-
urations work properly. However, testing configurable systems is
more challenging than testing monolithic systems. While in mono-
lithic software systems there is only one product/configuration (a
combination of features) to be tested, for configurable systems we
need to run all tests in several different configurations, which leads
to a combinatorial explosion of configurations and tests. Therefore,
testing thoroughly, against all configurations, is a costly practice.
Alternatively, a popular strategy used in industry is to run the tests
for a subset of default configurations. This approach is efficient, but
it can miss bugs [14, 24].

Besides those two cases (testing only default configurations or
exhaustively testing all configurations), several approaches for test-
ing configurable systems have been proposed [7, 11, 20, 22, 26, 30,
31, 34]. Some of them consider only the feature model [7, 22, 26, 31]
in order to define products to be tested. However, they may explore
configurations not reached by tests. Other approaches [20, 30, 34]
take the code (test or source) into account in addition to the fea-
ture model, and dynamically explore all reachable configurations
from a given test. However, such dynamic techniques only explore
configurations related to testing.

Even with a large number of testing techniques and tools for
configurable systems [7, 22, 26, 30, 31, 34], their potential practical
application remains mostly unexplored. We still lack a deeper un-
derstanding of the effectiveness of test strategies for configurable
systems. In this context, we contribute to the research of testing
configurable systems with a dataset composed of 22 configurable
systems and an extensive test suite proposed in our prior work
[12]. Therefore, we challenge the research community to use their
testing strategies for configurable systems to find failures in the
target systems of our proposed dataset.

We argue that the provided dataset is well suited as subjects for
the challenge of finding failures due to the variety of configurable
systems and because each configurable system has an extensive
test suite. We expect participants to evaluate their solutions by
measuring how strongly their testing strategies for configurable
systems can be in finding failures in the systems of our dataset. Each
solution could be assessed concerning how efficient and effective
the solution is for testing configurable systems. We propose the use
of the recall traditional metric and a new metric named solution
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efficiency to verify the effectiveness and efficiency of the proposed
strategy. Through these metrics, it is possible to measure the num-
ber of priority test configurations and the number of failures found
by the proposed testing strategies.

Challenge: the participants must propose a testing strategy for
configurable systems. The efficiency of the strategy needs to be
higher than our baseline. However, its effectiveness must be main-
tained. In other words, the proposed testing strategies must max-
imize recall and minimize the number of tested configurations.

We propose two metrics as a measure of effectiveness and ef-
ficiency. The dataset of configurable systems with extensive test
suites and reports of failures can be found at:

https://fischerjf.github.io/ challenge/

2 BACKGROUND
This section presents an overview of variability encoding (Section
2.1) and presents an overview of testing on configurable systems
(Section 2.2).

2.1 Variability Encoding Overview
The variations in configurable systems of our dataset use the vari-
ability encoding (execution-time) technique. Configurable systems
have long been studied by the software product line engineering
community [4, 32] and represent a configurable set of systems that
share a common, managed set of options (or features) to address
specific needs. Among the strategies to introduce variability in
software systems, variability encoding has drawn practitioners’
attention since developers only need to annotate variation points on
their existing systems. Thus, developers only activate or deactivate
features to address different deployment contexts. For short, while
annotating variation points, developers should create a configura-
tion file where they determine options that are going to be active
in a target variation.

Listing 1 presents a fragment of code in a configurable sys-
tem, named Companies. In this example, the method getTotal re-
turns a string containing a calculated value. If the feature TO-
TAL_WALKER is active, the method returns the value calculated
by the TotalWalker class. If the feature TOTAL_REDUCER is
active, the method returns the value calculated by the TotalRe-
ducer class. On the other hand, if the features TOTAL_WALKER
and TOTAL_REDUCER are not active, no value is calculated.

1 public String getTotal () {

2 String value = "";

3 if (Configuration.TOTAL_WALKER) {

4 TotalWalker walker = new TotalWalker ();

5 walker.postorder(currentValue);

6 value = Double.toString(walker.getTotal ());

7 } else if (Configuration.TOTAL_REDUCER) {

8 TotalReducer total = new TotalReducer ();

9 double valueDouble = total.reduce(currentValue);

10 value = Double.toString(valueDouble);

11 }

12 return value;

13 }

Listing 1: Variability encoding example

2.2 Testing Configurable Systems
The fact that the number of possible product variants grows expo-
nentially with the number of variation points makes such thorough
testing infeasible. In other words, above a certain amount of fea-
tures, it is infeasible to test all possible feature combinations (e.g.,
using brute force algorithms). This way, researchers and practition-
ers have to choose somehow the configurations they want to test.
However, it is not trivial to know which priority configuration to
test.

Over the years, various approaches have been developed to test
configurable systems [9, 10, 23]. These approaches can be classi-
fied into: configuration sampling [16, 18, 34] and variability-aware
testing [21, 27, 39]. Configuration sampling approaches sample a
representative subset of all valid configurations of the system and
test them individually. Variability-aware testing approaches instru-
ment the testing environment to take variability information and
reduce the test execution effort. For instance, among the sampling
approaches, the incremental sampling method generates and tests
products one at a time to enhance the sampling efficiency in terms
of the interaction coverage rate [3].

Some test strategies consider only the feature model to gener-
ate products to be tested, often performed on a small subset of
configurations, which presumably covers a sufficient amount of
functionality of the system. Other approaches take the code (test
or source) into account in addition to the feature model, and dy-
namically explore all reachable configurations from a given test
[21, 34]. These dynamic techniques do not explore configurations
unrelated to the tests. However, the quality of the test suite of the
configurable system strongly influences the performance of these
approaches. If the test suite is unable to observe failures, strategies
that find all possible configurations or a representative group of
them may not observe failures effectively. The configuration sam-
pling or variability-aware testing strategies only establish the valid
configurations that discover the configurations for testing.

In this context, we encourage the community to use our dataset
as it provides a test suite for each configurable system available. As
an advantage of our challenge, testing strategies can benefit from
the available test suite. Moreover, the large dataset of configurable
systems and failures is a unique opportunity for us to characterize
them. For instance, a deep understanding of feature interaction
failures in configurable systems may help practitioners to identify
the reasons for failures that occur in their systems.

3 DATASET OVERVIEW
In this section, we provide an overview of the proposed dataset.
Section 3.1 presents the metrics that characterize the proposed
dataset. We provide a summary of the test-enriched dataset in
Section 3.2. Section 3.3 shows an overview of the test suite creation
process for configurable systems. Section 3.4 presents a motivating
example of using the dataset. In Section 3.5, we present the failures
found in the proposed dataset. Finally, Section 3.6 describes the
dataset artifacts.

3.1 Evaluation Metrics
For a better comprehension of the subject configurable systems in
our dataset, we collected static and variability metrics. We collected

https://fischerjf.github.io/challenge/


Testing Configurable Software Systems: The Failure Observation Challenge SPLC’20, October 19–23, 2020, Montréal, Canada

metrics with five different tools. Metrics related to the size of the
configurable systems (e.g., number of lines of code and number of
packages) were computed by CK tool andMetrics. CK tool [6]
is an open-source tool hosted in GitHub that contains a broad set
of code metrics at class-level and method-level for Java projects.
As the name suggests, CK tool computes all metrics in the well-
known CK suite. CK suite includes object-oriented metrics, such
as Coupling between Objects (CBO), Weighted Methods for Class
(WMC), and Depth of Inheritance Tree (DIT) [5]. Similar to the CK
tool,Metrics [28] is a Eclipse plugin that supports various size
metrics, such as the number of lines of code (# LOC), the number
of classes (# Classes) and methods (# Methods).

Metrics related to the variabilitywere extractedwith FeatureIDE.
For instance, we collected the number of features and valid config-
urations from the feature model of each subject system. We used
JaCoCo [17] and PIT [8] to retrieve metrics related to the test suite.

3.2 Test-enriched Configurable System Dataset
Table 1 presents an overview of the 22 configurable systems that
compose our dataset. We provide additional information about the
proposed dataset in our supplementary website 1. These systems
belong to several domains, such as games, text editor, media man-
agement, and file compression. The columns of Table 1 represent the
systems’ name, size, variability, and test suite metrics. We discuss
each of these metrics next.

Size metrics. We selected systems of different sizes. We mea-
sure the number of lines of code (#LOC), packages (#Packages),
classes (#Classes), and methods (#Methods). The configurable sys-
tems in our dataset vary from 189 lines of code (BankAccount)
to more than 150 000 lines of code (ArgoUML). Similarly, while
FeatureAMP8 has only 8 classes and ArgoUML has almost 2 000
classes.

Variabilitymetrics. We selected systems with different amount
of variability. For instance, while CheckStyle has 141 features,
two systems (Chess and Paycard) have only four features. This
variation can also be seen in the number of valid configurations
(#VC). For instance, while Paycard has 6 valid configurations, Fea-
tureAMP3 has 20 500 valid configurations.

Test suite metrics. The process of creating the test cases uses
information from the systems documentation. For some systems,
we only extend their original test suites. We rely on the code cov-
erage metric through the test suite and the percentage of mutants
killed (Section 3.3) to evaluate the quality of tests. We believe that
participants in our challenge can use these metrics to support their
analysis. We not only report the number of test cases each test suite
has, but also the number of lines of code of each test suite. The
variety of sizes and characteristics of the configurable systems of
our dataset can be a challenge for candidate solutions. In this way,
we encourage participants to apply their strategies to our dataset
and report on which situations their test strategies provide the best
results.

3.3 Test Suite Creation
The creation or extension of the test suite consists of two tasks:
creating test cases and generating mutants

1https://fischerjf.github.io/challenge/.

Creating test cases. We use JUnit framework to create test
cases. JUnit [19] is a popular open source test framework that pro-
vides an environment for handling automated testing. JUnitmakes
it possible to create and run a suite through plugins that can be cou-
pled with the main integrated development environment. Unit tests
are performed to verify if a piece of code related to each feature
behaves following a target configurable system requirements. In
addition to JUnit, we useMockito [29] and FEST [13] to allow the
creation of mock object simplifying the development of tests for
classes with external dependencies and to write tests for systems
with graphical user interfaces (GUI), respectively. The stop criterion
for creating test cases is a code coverage of 70%. This threshold is
related to the generation of mutants as explained next.

Generating mutants. We introduce mutations to configurable
systems and check whether mutants are killed based on two tasks.
First, we execute PIT to generate and execute test suit against the
mutants, and analyze its report. PIT [8] is a mutation testing tool
for Java integrated with Maven, which makes it easy to set up the
environment to evaluate test suites through mutant analysis testing.
Then, we manually create new test cases to kill some of the live
mutants and run JaCoCo to retrieve code coverage. JaCoCo [17]
is a free code coverage library that analyzes each line of code to
check if it was executed or not by a test case and then returns
code coverage information. If 40% of the mutants are not killed,
we repeat mutation generation and test case creation until the test
suites reach 70% of code coverage and 40% of mutants killed for
each subject configurable system.

Listing 2 demonstrates a unit test of the Companies test suite.
For example, the code snippet from this test verifies if observers
were added to the sub units (line 9) and checks if two observers
were added to sample Company (line 10). We introduce a control
condition to ensure that the test runs only if the features are active
(LOGGING and PRECEDENCE), as shown in line 3 of Listing 2. This
way, when this test runs, the features LOGGING and PRECEDENCE are
set to TRUE. Therefore, through this instrumentation, test cases
are modified to test configurable systems.

1 @Test

2 public void addObservers () {

3 if (Configuration.LOGGING && Configuration.PRECEDENCE) {

4 CompanyImpl sampleCompany = new CompanyImpl ();

5 Logging log = new Logging ();

6 sampleCompany.addObserver(log);

7 Precedence pre = new Precedence ();

8 sampleCompany.addObserver(pre);

9 assertTrue(sampleCompany.observerAdded);

10 assertEquals (2, sampleCompany.countObservers ());

11 }

12 }

Listing 2: Unit test example adapted from [34]

3.4 Example of Use
In this section, we present an example of configurable system in our
dataset. We show our framework for running the test suite. With
the support of our framework, participants can use the test suite
for each configuration of features that their test strategies produce.
Figure 1 shows the feature model of the configurable system called
Companies. Companies is a human resource management system.
Configurations enable various forms to calculate salary and give
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Table 1: The Dataset

Name Size metrics Variability metrics Test Suite metrics
#LOC #Packages #Classes #Methods #Features #VC #Var. #Test #LOCTest #Coverage #KM

ArgoUML[25] 153 977 92 1 812 13 034 8 256 1 388 1 326 17 014 17% 9%
ATM[33] 1 160 2 27 100 7 80 44 76 1 371 91% 79%
BankAccount[35] 189 3 9 22 10 144 13 42 539 92% 62%
Checkstyle[39] 61 435 14 78 719 141 >2135 180 719 13 606 38% 5%
Chess[33] 2 149 7 22 162 3 8 20 77 1 296 72% 72%
Companies[34] 2 477 16 50 244 10 192 255 42 1 850 70% 46%
FeatureAMP1[35] 1 350 4 15 93 28 6 732 40 18 977 85% 46%
FeatureAMP2[35] 2 033 3 14 167 34 7 020 55 18 698 72% 43%
FeatureAMP3[35] 2 575 8 16 223 27 20 500 93 15 725 77% 42%
FeatureAMP4[35] 2 147 2 57 203 27 6 732 57 12 622 82% 40%
FeatureAMP5[35] 1 344 3 9 895 29 3 810 36 17 730 91% 49%
FeatureAMP6[35] 2 418 8 30 202 38 21 522 76 09 207 31% 43%
FeatureAMP7[35] 5 644 3 46 220 29 15 795 57 08 180 28% 40%
FeatureAMP8[35] 2 376 2 6 106 27 15 708 48 78 1 637 82% 42%
FeatureAMP9[35] 1 859 3 8 134 24 6 732 53 105 1 975 83% 63%
GPL[34] 1 235 3 17 78 13 73 59 51 1 162 83% 60%
MinePump[35] 244 2 7 26 7 64 4 34 459 91% 65%
Notepad [34] 1 564 4 17 90 17 256 24 25 1 790 59% 15%
Paycard[35] 374 2 8 27 4 6 10 13 453 88% 61%
Prop4J[35] 1 138 2 15 90 17 5 029 17 63 504 71% 67%
Sudoku[34] 949 2 13 51 6 20 53 35 650 80% 67%
Vending Machine[25] 472 2 7 21 8 256 7 37 297 97% 83%
#LOC, #Packages, #Classes, and #Methods stand for the number of lines of code, Packages, Classes, and Methods, respectively.
#Feat., #VC, and #Var. stand for the number of features, valid configurations and occurrences of variability in the source code, respectively.
#Test,#LOCTest, stand for the number of test cases, number of lines of code in the test suite, respectively.
Coverage and #KM: stand for percentage of coverage of the test suite, the percentage of killed mutants, respectively.

access to users according to their department. The configurable
system Companies is composed of 13 features, 10 of which are
concrete and three abstract. Figure 1 also shows one base and 6
optional features. Moreover, for the Companies, it is possible to
find 192 valid configurations according to its feature model.

Figure 1: Feature Model of Companies

The challenged participants are expected to use our framework
to run the test suite with their test solution. We present a small
example to illustrate the use of our framework to call the test suite
for each target system in our dataset. Figure 2 shows a valid config-
uration for the configurable system Companies. Each configuration
must be in a file with only the active features listed, each feature in
one line, as shown in Figure 2. Furthermore, each configurable sys-
tem has a package called “Experiment”. The experiment package has

the “run” method of the “ Challenge” class that requires two param-
eters. The first is the target system (e.g., “TargetSystem.COMPANIES”
in the given example) and the second one is the path of the config-
uration file. Using this structure, the entire test suite is called for
each configuration provided. These procedures apply to all systems
in our dataset.

Figure 2: Configuration example

To exemplify the output, we report a feature interaction fail-
ure from the Companies configurable system. This system has a
feature interaction problem related to the functionality of assign-
ing a new salary to an employee of a company when the com-
pany expense cut is made. The related features are PRECEDENCE
and CUT_WHATEVER. The business rule related to feature PRECE-
DENCE is to watch all salary changes in two situations: (i) an em-
ployee must have a lower salary than their direct manager and
(ii) a manager of the upper department, if any, must have a higher
salary than the manager of a target department. The business rule
concerning feature CUT_WHATEVER refers to reduce salaries that
may be in the whole company, a specific department, or a specific
employee. For instance, when there is a salary reduction in a tar-
get department, the salary of each employee of this department
is recalculated according to the established reduction. The failure
we found (by the "testTotalValueDepartment") happens when the
feature PRECEDENCE is also active. Hence, another department
may also have salary reduction. However, instead of retrieving the
current salary, the recalculation is made on a previous salary, which
makes the reduction larger than it should be.
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Table 2: Failure Report

Name Baseline SE#Conf. #FO

DSA

ATM 80 80 1
Bankaccount 144 6 0.041
Chess 7 30 4.286
Companies 192 6 0.031
GPL 73 23 0.315
MinePump 64 24 0.375
Paycard 6 3 0.5
Sudoku 20 4 0.2

DSB

ArgoUML 250 0 0
Checkstyle 250 0 0
FeatureAMP1 250 83 0.332
FeatureAMP2 250 28 0.112
FeatureAMP3 250 10 0.04
FeatureAMP4 250 117 0.468
FeatureAMP5 250 2 0.008
FeatureAMP6 250 20 0.08
FeatureAMP7 250 0 0
FeatureAMP8 250 2 0.008
FeatureAMP9 250 47 0.188
Notepad 250 0 0
Prop4J 250 0 0
Vending Machine 250 0 0

#Conf. and #FO stand for the number of configurations analyzed
and the number of failures occurred, respectively.
SE indicates the Solution Efficiency.

3.5 Failure Report
Table 2 presents a summary of failure reports for each configurable
system in our dataset. We have divided our dataset into two parts:
Dataset A (DSA) and Dataset B (DSB). Dataset A represents the
configurable systems for which we exhaustively run all possible
configurations. Dataset B refers to the systems for which we were
unable to test all possible configurations, as shown in Table 2. As
we can see, 16 systems present failures which represents 73% of the
configurable systems in our dataset. In addition, we can see that 485
failures (#FO) was found. To illustrate this, we look at the data re-
lated to the Companies configurable system, which has 10 features
(Table 1). We found 6 failures out of 192 analyzed configurations
(Table 2).

We use a strategy provided by FeatureIDE, namely All valid
configurations [2, 37] as a baseline for reporting failures in config-
urable systems. Since a thorough test against all configurations is
a costly practice, we have selected the maximal number of up to
250 configurations because it provides the results in a feasible time
for this study (up to 3 hours in a computer with 16 GB of RAM and
an i7 3.60GHz processor). The last column of Table 2 presents a
measurement of solution efficiency. We discuss this metric in Sec-
tion 4. We make available on the dataset website the failure found,
each configuration that failed, and the test cases that observed the
reported failures.

3.6 Description of dataset artifacts
The challenge artifacts are available in the companion website
of the dataset, organized into six items. We report the artifacts
concerning the Companies configurable system. However, all other
configurable systems in our dataset follow the same structure.

(1) Feature Model: We provide the feature model in two differ-
ent file formats: Guidsl 2 and XML 3.

2https://github.com/fischerJF/challenge/blob/master/workspace_IncLing/companies/
modified-model.m
3https://github.com/fischerJF/challenge/blob/master/workspace_IncLing/companies/
model.xml

(2) Metrics: We provide a set of 14 metrics to characterize the
dataset systems. We make these metrics available in a CSV
file 4. Each line of the file indicates a class of the configurable
system, and the columns indicate the metrics. few examples
of the available metrics are: i) CBO (Coupling between ob-
jects): it counts the number of dependencies a class has; and
ii) WMC (Weight Method Class): it counts the number of
branch instructions in a class. Participants can choose to use
these metrics in their strategies if they wish.

(3) Source Code: We provide the source code and test suite for
each configurable system 5. These systems were encoded
with the Java language using the variability encoding tech-
nique. Test approaches that prioritize test cases can choose a
group of available test cases. However, new test cases should
not be included in the challenge.

(4) Found Failures: We provide the found failures for the chal-
lenge systems 6. We present these faults in a CSV file that
contains the configuration in which the fault occurred, the
stack trace, and the test case that observed the failure.

(5) Analyzed Configurations: We provide the settings that
we run with our baseline 7. The configuration file follows
the model described in Figure 2.

(6) Example configurationswith IncLing tool:We add some
known sets of configurations already precalculated with the
IncLing tool 8. Participants can take this as an example of a
possible solution to our challenge. IncLing [1] is an incre-
mental sampling for pairwise interaction testing.

4 SOLUTION EVALUATION
This section presents the metrics that we use to measure how effi-
cient and effective test strategies for configurable systems can be
in observing failures.

4.1 Effectiveness Measurement for Dataset
We use the recall metric for the effectiveness of test strategies for
configurable systems in Dataset A. The cases for which the strategy
correctly found a failure are true positives (TP), also known as a
hit. We consider an output correct when the analyzed tool agrees
with the baseline in terms of the configuration that failed. We
consider this case when the tool pointed out a failure that the
baseline algorithm did not detect. Configurations that the brute
force algorithm identified, but the candidate solution did not report
are considered false negative (FN).

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁 ) (1)

4.2 Measurement of Efficiency
For Dataset A and B, we provide the failures we could find by list-
ing the first 250 valid configurations for each configurable system.

4https://github.com/fischerJF/challenge/blob/master/metrics/companies.csv
5https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/companies
6https://github.com/fischerJF/challenge/blob/master/failuresFound/Bankaccount.csv
7https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/All_
valid_conf/companies/products
8https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/
IncLing/companies/products

https://github.com/fischerJF/challenge/blob/master/workspace_IncLing/companies/modified-model.m
https://github.com/fischerJF/challenge/blob/master/workspace_IncLing/companies/modified-model.m
https://github.com /fischerJF/challenge/blob/master/workspace_IncLing/companies/model.xml
https://github.com /fischerJF/challenge/blob/master/workspace_IncLing/companies/model.xml
https://github.com/fischerJF/challenge/blob/master/metrics/companies.csv
https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/companies
https://github.com/fischerJF/challenge/blob/master/failuresFound/Bankaccount.csv
https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/All_valid_conf/companies/products
https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/All_valid_conf/companies/products
https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/IncLing/companies/products
https://github.com/fischerJF/challenge/tree/master/workspace_IncLing/Tools/IncLing/companies/products
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However, it is possible to find other failures in unvisited configu-
rations. In this way, we provide a metric that relates the number
of failure occurrences to the number of configurations visited, as
shown in Equation 2.

𝑆𝐸 =
𝐹𝑂

(𝐶𝑜𝑛𝑓 .) (2)

5 CONCLUSION
We proposed a dataset with 22 configurable systems and an exten-
sive test suite as a challenge for testing strategies for configurable
software systems. We provide three groups of metrics (traditional,
variability, and test suite) to characterize the proposed dataset for
the challenge. Moreover, we found and reported a total of 485 fea-
ture interaction failures in 16 systems of the proposed dataset.

Several datasets for the configurable systems have been used.
However, this dataset is the first dataset for configurable systems
with an extensive test suite [12]. Furthermore, it is an excellent
opportunity to share knowledge on test strategies for configurable
systems because we use the same test suite towards an unbiased
comparison of effectiveness and efficiency of testing strategies for
configurable systems. We believe that our dataset can be a com-
mon point of comparison for configurable system testing strategies,
and we encourage you to submit your solutions to the proposed
challenge.
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