
Feature Changes in Source Code for Commit
Classification Into Maintenance Activities

Richard V. R. Mariano∗, Geanderson E. dos Santos†, Markos V. de Almeida‡, Wladmir C. Brandão∗
∗Department of Computer Science, Pontifical Catholic University of Minas Gerais (PUC Minas), Belo Hozizonte, Brazil

†Department of Computer Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
‡Department of Computer Science, University of Alberta, Edmonton, Canada

richard.mariano@sga.pucminas.br, viggiato@ualberta.ca, geanderson@dcc.ufmg.br, wladmir@pucminas.br

Abstract—Software maintenance plays an important role dur-
ing software development and life cycle. Indeed, previous works
show that maintenance activities consume most of the software
budget. Therefore, understanding how these activities are per-
formed can help software managers to previously plan and
allocate resources in projects. Despite previous works, there is
still a lack in accurate models to classify developers commits
into maintenance activities. In the present article, we propose
improvements in a state-of-the-art approach used to classify
commits. Particularly, we include three additional features in the
classification model and we use XGBoost, a boosting tree learning
algorithm, for classification. Experimental results show that
our approach outperforms the state-of-the-art baseline achieving
more than 77% of accuracy and more than 64% in Kappa metric.

Index Terms—Source code changes, software maintenance,
classification model, machine learning

I. INTRODUCTION

Software maintenance is an important stage of any software

project, essential for software sustainability during its whole

life cycle [1]. Indeed, software maintenance usually consumes

most of the project budget [2], [3], [4], [5]. Several approaches

for software maintenance have been proposed in the litera-

ture [6], [7] and understanding how maintenance activities

are performed can help software engineers and practitioners

to previously plan and allocate resources to the software

project, ultimately reducing uncertainty and improving cost-

effectiveness relationship. One way to understand how main-

tenance activities are performed is classifying the activities

based on the history of commits in Version Control Systems

(VCS). For this, three categories are largely used by both

research community and software industry [7]: the adaptive

category that refers to new features added to the system, the

corrective category that refers to both functional and non-

functional issues, and the perfective category that refers to

changes that improve software design.

Previous works that investigate commit classification into

maintenance activities are based only in simple text analysis

on commits, reporting an average accuracy below 60% when

evaluated within an unique project and below 53% when

evaluated within several projects [8], [9]. The state-of-the-art

(SOTA) approach to classify commits [5] propose the use of

Gradient Boosting Machine (GBM) [10], [11] and Random

Forest [9], [12] classifiers, taking into account commits and

source code changes (e.g., statement added, method removed)

as classification features. The GBM classifier presents average

accuracy of 72% and Kappa coefficient of 57%, while the

Random Forest (RF) classifier presents average accuracy of

76% and Kappa coefficient of 63%. Despite many efforts

towards finding the best approach for commit classification,

there is still a lack of high accurate models. In addition, many

possible features regarding commits are not taken into account

in the current SOTA approach.

In this article, we propose improvements on the SOTA

approach used to classify commits into maintenance activi-

ties [5]. First, we include the following information regarding

quantitative changes in source code as additional features:

total added LOC (lines of code), total deleted LOC, and the

number of files changed, both per commit. Second, we use

XGBoost as a classifier, in addition to Random Forest. In

recent works reported in literature XGBoost outperforms other

implementations of boosting learning algorithms [13], [14].

Additionally, we evaluate the proposed improvements by

contrasting our proposed approach with the SOTA approach,

reporting the accuracy and Kappa metrics. The Kappa metric

(Cohen’s Kappa coefficient) is particularly important in cases

when the classification categories are unbalanced, i.e., when

there are much more occurrences of one class in comparison to

others. This scenario could mislead to a high accuracy, when,

in fact, this results from unbalanced classes. Experimental

results show that our proposed approach outperforms the

SOTA approach achieving 77.32% of accuracy and 64.61%

in Kappa metric, with gains of up to 5.13% in accuracy and

6.49% in Kappa metric.

The reminder of this paper is organized as follows. In

Section II, we present related work. Section III presents our

proposed improvements on the SOTA approach for commit

classification. Section IV presents the experimental setup and

results. Section V discuss the possible applications of our

proposed approach. Finally, Section VI concludes our work

and presents directions for future work.

II. RELATED WORK

Many previous works have attempted to propose accurate

models to classify commits into maintenance activities. Most

of them are based on the commit messages, using text analysis,

such as word frequency counting, to find specific relevant

515

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00096

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:16:17 UTC from IEEE Xplore. Restrictions apply.

keywords to be used in classification [7], [15], [16], [9], [4].

For instance, Mockus and Votta [7] proposed a commit com-

ment based model to classify commits, reporting an average

accuracy of approximately 60% within the scope of a single

project, a large software systems with millions of LOC. Hindle

et al. [9] proposed the automation of commit classification by

training learning approaches on features extracted from the

commit metadata, such as the word distribution of commit

messages, commit authors, and modified modules. The authors

reported accuracy above 50% and argue that the author’s

identity of a commit provides much information about the

maintenance class of a commit, almost as much as the words

of the commit message.

Levin and Yehudai [4] proposed a designated repository

mining platform, which was used to create a metric dataset

from the top 1,000 highly popular open source GitHub

repositories, consisting of 147 million LOC and maintained

by over 30,000 software developers. The metrics extracted

from the dataset were used to predict maintenance activity

profiles. The authors show that there is a strong correlation

between some metrics with R2 values achieving up to 0.83.

They argued that their results may help project managers to

detect anomalies in the development process and to build

better development teams. In a more recent work, Levin and

Yehudai [5] combined keywords from commit comments and

source code changes (e.g., statement added, method removed)

to classify commits. The authors used GBM and Random

Forest as underlying learning algorithms. Their results showed

that both algorithms presented higher accuracy than previous

baselines, with Random Forest performing better than GBM.

Additionally, both algorithms presented regular Kappa metric

values.

Previous works that attempt to classify commits into main-

tenance activities have not taken into account many commit

properties, such as the amount of modified LOC. Different

from the previous works, we exploit three novel features

regarding quantitative changes in source code performed by

commits: the number of added LOC, the number of deleted

LOC, and the number of files changed. In addition, we XG-

Boost as replacement for GBM, since XGBoost outperforms

other implementations of boosting algorithms, usually with

better accuracy [13], [14].

III. THE COMMIT CLASSIFICATION APPROACH

This section presents the three steps that we follow to

propose and evaluate improvements on the SOTA approach for

commit classification into maintenance activities. In addition,

Section III-A presents the labeled commit dataset and Sec-

tion III-B presents the additional features we used for commint

classification.

Literature Review: First, we perform a literature review

to identify related work on classification of commits into

maintenance activities [7], [15], [16], [9], [4] as well as the

SOTA approach for this task [5]. The SOTA approach uses the

classification procedure proposed by Mockus and Votta [7] to

classify their models according to three categories: adaptive,

corrective and pefective.

Feature Collection: Second, we collect additional fea-

tures from GitHub1 via HTTP requests to the GitHub

GRAPHQL API2. These features bring more information

regarding each commit performed by the developer and poten-

tially improve the classification of commits into maintenance

tasks. In Section III-A, we explain how the labeled dataset

was obtained and in Section III-B, we explain how the new

features can be useful to distinguish commit categories.

Experiments and Analysis: Third, we conduct experi-

ments to evaluate the performance of our proposed improve-

ments on the SOTA approach. For this, we split the labeled

dataset in training (85% of the data) and test (15% of the

data) and for each classification algorithm we perform cross-

validation to tune the hyperparameters. We evaluate the train-

ing dataset by using 10-fold cross validation with 5 repetitions,

i.e., the 10-fold cross validation was performed 5 times and the

average accuracy metric is reported. This procedure provide

the best hyperparameters to build the classification model.

A. Labeled Commit Dataset

We use a subset of the GitHub repositories reported in a

previous work [5]. The number of stars, forks, dates and sizes

were used as a criteria to select 11 repositories, representing a

wide domains of software projects, such as IDEs, distributed

databases, storage platforms, and integration frameworks. In

particular, we select the following repositories: RxJava, Intellij

Community Edition, HBase, Drools, Kotlin, Hadoop, Elastic-

search, Restlet, OrientDB, Camel, and Spring Framework.

Additionally, we analyse the commit history of each dataset.

For each two subsequent commits c1 and c2 (c2 has been done

right after c1), the source code changes between them were

identified and registered. These changes were first proposed

by [17] that added up to 48 different types of changes.

Therefore, for each commit, there are a set of 48 features, one

for each type of code change. These features are represented

by arrays (of size 48) in which each coordinate corresponds

to a change and its value corresponds to the number of times

the respective change was performed. Furthermore, for each

commit, its comment was inspected and searched for a specific

set of 20 keywords. The keywords are also part of the features

of the model. They are represented by a binary array (of size

20) where each coordinate corresponds to a keyword and the

value “1” indicates the occurrence of that keyword, while “0”

indicates the absence.

Thus, we select 68 features (48 + 20), corresponding to

source code changes and keyword occurrences, respectively.

The labeling process was manually performed. Approximately

100 commits were randomly sampled from the 11 repositories

and classified according to one of the three maintenance cat-

egories (adaptive, corrective and perfective). When a commit

did not present sufficient information to allow classification,

1https://github.com/
2https://developer.github.com/v4/

516

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:16:17 UTC from IEEE Xplore. Restrictions apply.

another one was selected until finding one which was possible

to confidently classify. It is important to note that the unbal-

ance problem was addressed by adding more commits of the

starved class from the same project. The final dataset consists

of 1,151 manually classified commits.

B. Additional Features

We collect three additional features from the 11 repositories

and incorporate them in the labeled commit dataset: the total

LOC added by the commit, the total LOC deleted by the

commit, and the number of files changed by the commit,

giving a total of 71 features in our classification model. The

additional features can be extremely useful for separating

adaptive class from the others, however they may not be

conclusive regarding the other classes. As we experimented,

added LOC is considerably higher in adaptive class, changed

files is less significant in corrective, while deleted LOC does

not present a strong difference. For this reason, we decided to

include both features since their co-occurrences can be helpful

to separate the maintenance classes.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup and

results. In particular, in Section IV-A we present the impact

of each additional feature in the classification performance,

in Sections IV-B and IV-C we present setup procedures used

to calibrate the XGBoost and Random Forest classifiers,

respectively, and in Section IV-D we present a summary of the

results on the comparison between the SOTA and our proposed

approach to classify commits into maintenance activities.

A. The Impact of the Features

To evaluate the impact of each proposed feature in the

classification task, we evaluate each feature separately and

combined using 10-fold cross-validation. Table I shows the

results of these evaluation, where NaN refers to add no feature,

CF refers to add the the number of files changed by the

commit, AL refers to add the total LOC added by the commit,

and DL refers to add the total LOC deleted by the commit.

TABLE I: The Impact of Features on Commit Classification

NaN CF AL DL CF
AL

CF
DL

AL
DL

CF
AL
DL

Accuracy 71,69 71,60 72,30 71,62 72,50 71,36 72,66 72,31
Kappa 55,89 55,74 56,99 55,57 57,26 55,23 52,55 56,81

B. XGBoost

The XGBoost was trained and tested in the labeled commit

dataset using 10-fold cross-validation. A grid of hyperparam-

eters was passed to the evaluation method in order to find

the best ones. The main parameter to tune is the maximum

depth of a tree in the XGBoost, since it impacts in the

model overfitting. Table II shows an excerpt of some variations

in the hyperparameters colsample bytree (subsample ratio of

columns) and max depth (maximum tree depth), with 150

iterations. The best observed parameters are in bold.

TABLE II: Hyperparameters grid for XGBoost

max depth colsample bytree Accuracy Kappa
1 0.4 0.6952 0.5258
1 0.7 0.7004 0.5334
3 0.4 0.7443 0.6011
3 0.7 0.7280 0.5766
6 0.4 0.7239 0.5683
6 0.7 0.7259 0.5721

From Table II we observe that the best hyperparameters are

0.4 (colsample bytree) and 3 (for max depth), since with them

the model presented 0.7443 of accuracy and 0.6011 of Kappa

metric in training. Using these hyperparameters values, the

model was evaluated in the test dataset, presenting an accuracy

of 0.7570 and a Kappa metric of 0.6070.

C. Random Forest

Similarly to XGBoost, the Random Forest was trained and

tested in the labeled commit dataset using 10-fold cross-

validation with a grid of hyperparameters. For the Random

Forest, the unique parameter to tune is mtry, the number

of predictors that are randomly selected for each tree in

order to ensure that generated trees are uncorrelated. Using

the best mtry value of 35 in training, i.e., 35 features are

randomly selected among the 70, the Random Forest model

was evaluated in the test dataset, presenting an accuracy of

0.7732 and a Kappa metric of 0.6461.

D. Summary of Results

The proposed improvements in the SOTA approach to

classify commits into maintenance activities positively impacts

in classification accuracy. Table III summarizes the results

of our evaluation on SOTA and our proposed improvements

(OURS).

TABLE III: Comparison of SOTA and proposed improvements

SOTA OURS
GBM RF XGBoost RF

Accuracy 0.7200 0.7600 0.7570 0.7732
Kappa 0.5700 0.6300 0.6070 0.6461

From Table III we observe that our approach presents

higher accuracy and Kappa coefficient for both classifiers. For

XGBoost, our approach outperforms SOTA GBM with gains

of 5.13% for accuracy and 6.49% in Kappa metric. Regarding

the Random Forest, our approach outperforms SOTA with

gains of 1.73% for accuracy and 2.55% in Kappa metric.

These results attests that including our proposed features is

useful for classifying commits. In addition, using advanced

implementations of boosting algorithm, such as XGBoost,

indeed can improve classification performance.

V. APPLICATIONS

The proposed improvements on SOTA approach to classify

commits in maintenance activities can produce positive impact

in several different software development approaches. In this

section, we present some of the potentially applications of the

results of the present article.

517

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:16:17 UTC from IEEE Xplore. Restrictions apply.

A previous work [4] investigated the amount of commit

that a given developer made in each of the maintenance

activities (adaptive, corrective and perfective) and suggested

the notion of a developers maintenance profile. The models

proposed by the authors to predict developer maintenance

profile could be supported by our approach to classify commits

into maintenance tasks, and possibly they could yield higher

accuracy in their prediction.

Another possible application is the identification of anoma-

lies in the software development process. Managers must keep

maintenance activities performed by developers under control,

i.e. the number of commits made in each maintenance cat-

egory. Monitoring unexpected behavior in maintenance tasks

and its causes would assist managers to plan ahead and allocate

resources in advance. For instance, lower adaptive activity may

indicate that the project is not evolving as expected, and lower

corrective activity may suggest that developers are neglecting

fault fixing. Identifying root causes of such problems may

aid the manager to improve projects health. Additionally,

recognizing maintenance patterns in successful projects may

be useful as guidelines for other projects.

Building a software team is a non-trivial task given the

diversity of technological and human aspects [18]. Commit

classification may help to build a more reliable and balanced

developer team regarding the developer maintenance activity

profile [4]. When a team is composed of more developers with

a specific profile (e.g., adaptive) than others, the development

process may be affected and the ability of the team to meet

usual requirements (e.g., developing new features, adhering to

quality standards) could also be negatively impacted.

VI. CONCLUSION

In the present article we proposed improvements on a SOTA

approach used to classify commits into software maintenance

activities. In particular, we proposed the adoption of three new

features and the use of the XGBoost algorithm to perform

commit classifications. In addition, we carried out experiments

using a labeled commit dataset to evaluate the impact of

our proposed improvements on commit classification. Exper-

imental results showed that our proposed approach achieved

77.32% of accuracy and 64.61% of Kappa metric outperform-

ing the SOTA approach with gains of up to 5.13% in accuracy

and 6.49% Kappa metric.

As future work, we intend to evaluate other features related

to software commits, and use other datasets with a larger

number of commits to improved the accuracy of the classifiers.

We also intent to evaluate other classification algorithms using

different evaluation metrics, e.g., precision and recall, to im-

prove our understanding on the classifiers behavior. Commits

have more metadata that were not analyzed in this article

due to the scope of the application and intended comparison

with the existing approach. Moreover, we intent to use NLP

(Natural Language Processing) to investigate the commit text

based on the maintenance activities. Thus, we could generate

a classification approach able to classify the commits automat-

ically based on the labels discussed in this article. Finally, we

intent to use other categories (i.e., activities) proposed in the

literature to generalize the results.

ACKNOWLEDGMENT

The present work was carried out with the support of the

Coordination of Improvement of Higher Education Personnel

- Brazil (CAPES) - Financing Code 001. The authors are also

thankful for the support given by CNPq, FAPEMIG and PUC

Minas (grant FIP 2019/22461-1S).

REFERENCES

[1] M. Gupta, “Improving software maintenance using process mining
and predictive analytics,” in Proceedings of the 33rd IEEE Interna-
tional Conference on Software Maintenance and Evolution, ICSME’17,
pp. 681–686, 2017.

[2] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 21, no. 6, pp. 466–471, 1978.

[3] S. Schach, B. Jin, L. Yu, G. Heller, and J. Offutt, “Determining the
distribution of maintenance categories: Survey versus measurement,”
Empirical Software Engineering, vol. 8, pp. 351–365, 2003.

[4] S. Levin and A. Yehudai, “Using temporal and semantic developer-level
information to predict maintenance activity profiles,” in Proceedings of
the 32nd IEEE International Conference on Software Maintenance and
Evolution, ICSME’16, pp. 463–467, 2016.

[5] S. Levin and A. Yehudai, “Boosting automatic commit classification into
maintenance activities by utilizing source code changes,” in Proceedings
of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering, PROMISE’17, pp. 97–106, 2017.

[6] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of
the 2nd International Conference on Software Engineering, ICSE’76,
pp. 492–497, 1976.

[7] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in Proceedings of the 16th IEEE International
Conference on Software Maintenance, ICSM’00, pp. 120–130, 2000.

[8] J. Amor, G. Robles, J. Gonzalez-Barahona, A. Gsyc, J. Carlos, and
S. Madrid, “Discriminating development activities in versioning systems:
A case study,” in Proceedings of the 2nd International Conference
on Predictive Models and Data Analytics in Software Engineering,
PROMISE’06, 2006.

[9] A. Hindle, D. German, M. Godfrey, and R. Holt, “Automatic classifi-
cation of large changes into maintenance categories,” in Proceedings of
the 17th IEEE International Conference on Program Comprehension,
ICPC’09, pp. 30–39, 2009.

[10] J. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[11] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd International
Conference on Machine Learning, ICML’06, pp. 161–168, 2006.

[12] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[13] T. Chen and C. Guestrin, “XGBoost : Reliable large-scale tree boosting
system,” in Proceedings of the Workshop on Machine Learning Systems
at Neural Information Processing Systems, LearningSys’15, 2015.

[14] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD’16, pp. 785–794, 2016.

[15] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the 19th IEEE International Conference on Software Maintenance,
ICSM’03, pp. 23–32, 2003.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?,” Software Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[17] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” in Proceedings of the 14th IEEE International Conference
on Program Comprehension, ICPC’06, pp. 35–45, 2006.

[18] N. Gorla and Y. W. Lam, “Who should work with whom?: Building
effective software project teams,” Communications of the ACM, vol. 47,
no. 6, pp. 79–82, 2004.

518

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:16:17 UTC from IEEE Xplore. Restrictions apply.

