
HowWell Do You Know This Library?
Mining Experts from Source Code Analysis

Johnatan Oliveira1, Markos Viggiato2, Eduardo Figueiredo1
1Dept. of Computer Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

2Dept. of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
johnatan.si@dcc.ufmg.br,viggiato@ualberta.ca,figueiredo@dcc.ufmg.br

ABSTRACT
Third-party libraries have been widely adopted in modern software
projects due to several benefits, such as code reuse and software
quality. Software development is increasingly complex and requires
specialists with knowledge in several technologies, such as the
nowadays libraries. Such complexity turns it extremely challenging
to deliver quality software given the time pressure. For this purpose,
it is necessary to identify and hire qualified developers, to obtain
a good team, both in open source and proprietary systems. For
these reasons, enterprise and open source projects try to build
teams composed of highly skilled developers in specific libraries.
Developers with expertise in specific libraries may reduce the time
spent on software development tasks and improve the quality of the
final product. However, their identification may not be trivial. In
this paper, we first argue that source code activities can be used to
identify library experts. We then evaluate a mining-based strategy
to identify library experts. To achieve our goal, we selected the 9
most popular Java libraries and identified the top-10 experts in each
library by analyzing commits in 16,703 Java projects on GitHub.
We validated the results by applying a survey with 137 library
expert candidates and observed, on average, 88% of precision for
the applied strategy.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Software defect analysis; Software evolution; Maintain-
ing software.

KEYWORDS
Library Experts, Software Skills, Expert Identification, Mining Soft-
ware Repositories

ACM Reference Format:
Johnatan Oliveira1, Markos Viggiato2, Eduardo Figueiredo1. 2019. HowWell
Do You Know This Library? Mining Experts from Source Code Analysis.
In XVIII Brazilian Symposium on Software Quality (SBQS’19), October 28-
November 1, 2019, Fortaleza, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3364641.3364648

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7282-4/19/10. . . $15.00
https://doi.org/10.1145/3364641.3364648

1 INTRODUCTION
Software development has become increasingly complex, both in
open source and proprietary systems [5]. Such complexity makes
it extremely challenging to delivery software with quality in time,
as well as may hinder the participation of developers in worldwide
repositories of source code, such as GitHub [25]. In order to find de-
velopers to contribute to open source projects or to hire developers
(in the case of a company), identifying the developer with the right
(and required) skills to obtain a good team is a difficult task [8, 13].
In addition, in many cases, project managers must build teams of
skilled developers in relevant libraries. However, decisions taken at
the hiring process are a well-known decisive factor to the success of
a software project [24]. Providing a more reliable way of identifying
developers’ skills can support project managers to take the right
decision when hiring or attracting the right developers for an open
source project. The task of finding experts in specific technologies
is especially complex, despite the existence of business-oriented
social networks, such as LinkedIn, where developers write about
their attributes and qualifications. In fact, this type of platform is
commonly used for online recruitment of professionals. However,
developers may inflate their skills or, conversely, omit some skills.

Most currently used strategies to find experts have their limi-
tations [3, 24]. For instance, the analysis of the curriculum from
LinkedIn or in paper format can omit desirable skills. In addition,
developers may have difficulty to express their qualifications [24].
Sometimes, the developer has a specific ability but considers it irrel-
evant. In another situation, the developer cites many skills, but does
not have expertise in the technologies mentioned [3]. Even large
companies may rely on traditional curriculum analysis, and this
type of analysis may have inaccurate or outdated information. Be-
sides, even talent recruiters may incorrectly identify the developer
skills or identify other skills that are not the focus of the organiza-
tion. Hiring lowly skilled software developers can lead to additional
costs, efforts, and resources for training them, or expending more
time and resources hiring others [3, 8, 22].

Software developers have used social coding platforms, such as
GitHub and BitBucket, to showcase their work in the hope that this
may help them being hired for a better job. Developers use these
social coding platforms to demonstrate their skills and to create
an online profile about their projects and technologies [3]. Some
contributors are even using the social aspects of these platforms to
infer project popularity trends and promote themselves more effi-
ciently through specific projects and collaborations in other open
source projects [3, 4]. In some cases, profiles derived from accounts
of social platforms, such as GitHub, are considered even more re-
liable than a curriculum from LinkedIn, concerning the technical
qualifications of a job candidate [3]. Therefore, the exploitation

https://doi.org/10.1145/3364641.3364648
https://doi.org/10.1145/3364641.3364648

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil Oliveira et al.

of data from coding platforms is a promising way for potential
employers when assessing candidates [2].

GitHub has been widely used in several works mainly because it
provides several user-based summary statistics, such as the number
of contributions in the last year, the number of forked projects, and
the number of followers. For instance, some works have used this
platform to identify appropriate maintainers for the source code [1]
and collaborations between projects [4]. Different approaches have
been used to investigate the skills of developers from GitHub [9, 14,
20]. For instance, a prior work conducted interviews with members
of GitHub to understand the hiring process [12]. Our study builds
on the works of [19] and [15] which proposed a strategy to identify
library experts from GitHub.

In this paper, we evaluate the feasibility of identifying library
experts from source code analysis. We rely on GitHub data to iden-
tify the skills of developers based on the actual contributions they
made. From each type of developer contribution, we can identify
essential developers skills. We evaluate the applicability and accu-
racy of the strategy. In the applicability evaluation, we performed
a mining study with the top-9 most popular Java libraries from
GitHub, aiming to identify library experts in these libraries. In total,
we analyzed more than 16 thousand projects. In the accuracy evalu-
ation, we designed and sent a survey with more than 1 thousand top
developers identified for these libraries. We received answers from
137 developers. We selected developers with the top-20% highest
values in at least two metrics. As a result, we observe that it is
possible to identify experts from source code with high precision
(in average 88%). We also note that the strategy provides mean-
ingful information to recruiters, such as, the history of write lines
of code (LOC) for each library. These details about the developers
can improve the selection of candidates. Our key contributions are
threefold: (1) we developed a tool to support identification library
experts from source code analysis; (2) we empirically evaluate the
applicability and accuracy of identifying library experts; and (3) we
identify 1,045 experts in 9 libraries.

The remainder of this paper is organized as follows. In Section 2,
we describe our analysis by detailing the strategy to identify li-
brary experts, our research questions and survey design. Section 3
presents the results of the applicability evaluation to identify library
experts. Section 4 shows the results to accuracy evaluation from a
survey with experts candidates. Section 5 presents and discusses
threats to validity. Related work is discussed in Section 6. Finally,
Section 7 discusses the concluding remarks and future work.

2 STUDY SETTINGS
This section describes the protocol to evaluate the identification of
library experts through an empirical study. Section 2.1 presents the
aims of our study and the research questions we address. Section 2.2
shows the steps performed to evaluate the experts. Section 2.3
describes the used dataset. Section 2.4 presents our strategy by
explaining its steps to identify library experts. Section 2.5 presents
the supporting tool and how it applies the strategy. Section 2.6
presents the settings of the survey with developers from GitHub.

2.1 Goal and Research Questions
The primary goal of this study is to evaluate the applicability and
accuracy of a strategy to identify library experts from source code
analysis using software repositories. We are interested in whether
the strategy can precisely identify experts in a specific library. We
are also concerned with assessing the relevance of the results pro-
vided by the strategy. For this purpose, we select the 10 most popu-
lar and standard Java libraries among the GitHub developers. To
achieve this goal, we use the Goal-Question-Metric method to se-
lect measurements of source code. The GQM method proposes a
top-down approach to define measurement; goals lead to questions,
which are then answered with metrics [10].

Table 1 shows the GQM with the research questions and metrics
investigated in this study. As mentioned, the goal of this paper
is to identify library experts from source code. Therefore, from
this goal, we check if it is feasible to analyze the source code in
order to identify library experts. Through RQ1, we are interested
in investigating the efficiency of the number of commits (metric) to
indicate the level of activity of a developer in a specific library. In
other words, we aim to analyze the number of commits involving a
specific library performed by a developer to compute his level of
activity in a library.

With RQ2, we aim at assessing the knowledge intensity based on
the number of imports to a specific library. That is, from all imports
made by a developer at the source code, we investigate the number
related to the specific library. Finally, the last research question
(RQ3) analyzes the knowledge extension of the developers from the
number of LOC related to the library (metric). In this last question,
we aim to evaluate the amount of LOC implemented by a developer
using a specific library. For this purpose, we evaluate the relation
of total LOC and LOC related to a specific library.

Table 1: The Metrics Analysis as GQMmethod

Questions Metrics
RQ1– How to evaluate the level of activity
of a developer in a library? Number of commits

RQ2– How to evaluate the knowledge intensity
of a developer in a library? Number of imports

RQ3– How to evaluate the knowledge extension
of a developer in a library? Lines of Code

2.2 Evaluation Steps
This section describes the steps to evaluate the identification of
library experts from source code. To answer the research ques-
tions presented in Section 2.1, we designed a mixed-methods study
composed of four steps: 1) Library Selection, 2) Dataset Collection,
3) Expert Identification, and 4) Survey Application. Figure 1 presents
the steps of our research, which are discussed next. For Library
Selection (Section 2.3), we selected the top-10 most popular libraries
in the Java programming language to identify library experts. In
the Dataset Collection step (Section 2.3), we clone the projects that
contain these libraries from GitHub. For Identification of Library
Experts (Section 2.4), we compute the skills of developers based on
three metrics: Number of Commits, Number of Imports, and Lines of

How Well Do You Know This Library?
Mining Experts from Source Code Analysis SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

Code. These metrics are presented in Section 2.4. Finally, we per-
formed a survey study. This survey was conducted to identify the
accuracy of the strategy according to the responses of developers.
Section 2.6 presents details about the survey.

Figure 1: Study Steps

2.3 Dataset
To create our dataset, we select the 10 most popular and common
Java libraries among the GitHub developers: Hibernate, Selenium,
Hadoop, Spark, Struts, GWT, Vaadin, Primefaces, Apache Wicket,
and JavaServer Faces. The selection was made based on a survey
provided by Stack Overflow1 in 2018 with answers of over 100,000
developers around the world. Table 2 summarizes the definitions
of each library. All definitions of the libraries were retrieved from
Stack Overflow and their Web pages. We selected Java because it is
one of the most popular programming languages 2 and there are
many Java projects available on GitHub. The projects that compose
our dataset were retrieved in August 2018.

Figure 2 illustrates the criteria for defining our dataset. To achieve
more realistic results for software development, we apply the fol-
lowing exclusion criteria. 1) We excluded systems with less than
1 KLOC because we considered them toy examples or early stage
software projects. 2) We removed projects with no commit in the
last 3 years because the developer may forget his code [11]. Finally,
in the last exclusion criteria (3), we removed projects which did not
contain imports related to the selected libraries. Besides the 3 men-
tioned criteria, we excluded all official projects of these libraries,
because we assume all developers of a library project are experts
in the corresponding library. We also removed libraries with less
than 100 projects (the case of JavaServer Faces). Therefore, we end
up analyzing 9 libraries in this study.

Figure 2: Steps for Collecting Software Projects fromGitHub

Table 3 shows the number of remained projects after each step
in our filtering process. The column Projects presents the number
of projects initially selected. Next, the column Filtered shows the
1https://insights.stackoverflow.com/survey/2018#most-popular-technologies
2https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

Table 2: Library Descriptions

Library Description

Hibernate Hibernate is a library of object-relational
mapping to object-oriented.

Selenium Selenium is a test suite specifically for au-
tomating Web.

Hadoop Hadoop is a library that facilitates the use
of the network from many computers to
solve problems involving massive amounts
of data [23, 27].

Spark Spark is a general-purpose distributed com-
puting engine used for processing and ana-
lyzing a large amount of data

Struts Struts help in developing Web-based appli-
cations.

GWT Google Web Toolkit (GWT) allows Web de-
velopers to develop and maintain complex
JavaScript front-end applications in Java.

Vaadin Vaadin includes a set of Web components, a
Java Web library, and a set of tools and appli-
cation starters. It also allows the implemen-
tation of HTML5 web user interfaces using
the Java.

PrimeFaces PrimeFaces is a library for JavaServer Faces
featuring over 100 components.

Apache Wicket Wicket provides a library for creating
reusable components and offers an object-
oriented methodology to Web development
while requiring only Java and HTML.

JavaServer Faces JavaServer Faces is a Java view library run-
ning on the server machine which allows
you to write template text in client-side lan-
guages (like HTML, CSS, JavaScript, etc.).

number of projects removed through filtering step. Finally, the
column Remained presents the number of projects analyzed for
each library.

Table 3: Projects Selected for Analysis

Library #Projects Filtered Reimaned
Hibernate 31,134 26,020 5,114
Selenium 19,062 17,648 1,414
Hadoop 11,715 10,778 937
Spark 9,144 7,650 1,494
Struts 4,741 4,127 614
GWT 4,086 2,635 1,451
Vaadin 3,240 2,625 615
PrimeFaces 1,881 1,401 480
Apache Wicket 1,095 896 199
JavaServer Faces 120 120 0

TOTAL 86,218 73,900 12,318

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil Oliveira et al.

2.4 Identification of Library Experts
This evaluation performs three steps described as follows.
Step 1: Extract data from source code – In this step, we obtain
data of the classes created by developers from a Git repository. All
data, such as added or removed LOC, written imports, commits,
date, email, and the name of developers are stored locally. Step
2: Search for imports – From the previous step, we search for
specific "imports" related to the chosen library. The idea is to explore
all files that import the name of the target library. Step 3: Calculate
skills – In this last step, we compute the skills for each developer.
We rely on three metrics to identify the library experts. Table 4
shows these metrics and explains them in more details. Each metric
is computed in relation to the amount of commits to a specific
library. That is, when a commit to a library is identified to library,
the metrics were calculated.

Table 4: Proposed Metrics

Metric Description

Number of Commits
This metric calculates the activity of each developer
through the number of commits using a particular li-
brary. Through this metric, it is possible to measure the
amount of use of the library in a project that a specific
developer works.

Number of Imports
This metric presents the intensity of use of a particular li-
brary. For this metric, we count all imports to the library
written by a developer. Repeated imports are included.

Lines of Code

To compute this metric, we developed a heuristic to
count the amount of LOC related to a specific library,
as follows. First, we obtain the ratio of changed LOC by
the number of all imports in the file. Then, we multiply
the ratio by the number of imports related to the library.

2.5 Tool Support
The identification of library experts is supported by a prototype
tool, named JExpert. We developed JExpert in Java programming
language. JExpert only works with Java projects, but the tool can
be easily adapted to identify library experts in other programming
languages. Figure 3 presents the simplified architecture design of
JExpert. The tool expects a set of projects from a Git repository
and keywords to represent each chosen library. It processes each
commit, extracting three pieces of information: (i) the file path; (ii)
the developer who performed the change; and (iii) the type of the
change. After that, JExpert analyzes the projects to find the library
experts. It then computes three metrics (Table 4) and returns a ".xls"
file with the sorted list of experts for each library.

Figure 3: JExpert Architecture Overview

2.6 Survey Design
This section describes the survey applied to developers fromGitHub
to evaluate the accuracy of JExpert. According to Easterbrook et
al. [7], survey studies are used to identify characteristics of a popu-
lation and are usually associated with the application of question-
naires. In addition, surveys are meant to collect data to describe,
compare or explain knowledges, attitudes, and behaviors [18]. We
select the library experts with the best values in the evaluated met-
rics to validate them through a survey. We designed and applied
a survey with the top developers identified by our strategy. We
selected developers with the top-20% highest values in at least two
(out of three) metrics.

We created a questionnaire on Google Forms3 with two parts:
the first one was composed of 5 questions about the background of
the expert candidates; the second part also had 5 questions about
the knowledge of the expert candidates regarding the evaluated
libraries. Table 5 shows the list of questions in the first part of our
survey and Table 6 summarizes the questions of the second part.
This table contains the tag <libray name>meaning a specific library,
for instance, Hadoop. The background questions were named BQ1
to BQ5, while the questions of the second part of our survey were
named SQ1 to SQ5. Tables 5 and 6 also describe the possible answers
for each question.

Table 5: Survey Questions on the Participant Background

ID Questions

BQ1
What is your highest level of education?
() Technical formation () Bachelor’s
() Post-graduate () Master’s () PhD

BQ2
In which course are you graduated?
() Computer Science () Information Systems
() Software Engineering () Others

BQ3
How many years have you dedicated to software development?
() Less than 1 year () 1 to 5 years
() 5 to 10 years () More than 10 years

BQ4
How often do you use Git?
() Most of the time (all code) () Sometimes (not all code)
() Rarely (little code)

BQ5
Which role do you usually play when developing applications?
() Back-end developer () Front-end developer
() Mobile developer () For learning

Table 6: Survey Questions on the Use of the Libraries

ID Questions

SQ1 How do you assess your knowledge in <libray name>?
() 1 () 2 () 3 () 4 () 5

SQ2 How many projects have you worked with <libray name>?
() 1 to 5 () 6 to 10 () 11 to 20 () More than 20 projects

SQ3 How many packages of <library name> have you used?
() A few () A lot

SQ4 How often do your commits include <libray name>?
() A few () A lot

SQ5

How much of your code is related to <libray name>?
() Few of my code is related to <libray name>
() My code is partially related to <libray name>
() Most of my code contains <libray name>

To obtain the email that the developer used to perform the com-
mits in the source code, we used the Git-Blame4 tool. The emails
3https://www.google.com/forms/
4https://git-scm.com/docs/git-blame

How Well Do You Know This Library?
Mining Experts from Source Code Analysis SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

were collected in order to send the survey. We send an email to
each developer asking him/her to assess his/her knowledge on each
library. The developers are invited, for instance, to rank their knowl-
edge (Table 6, SQ1) using a scale from 1 (one) to 5 (five), where (1)
means no knowledge about the library; and (5) means extensive
knowledge about the library. Questions are not mandatory because
they may require knowledge on exceptional features of the library.
Therefore, participants are not forced to provide an answer when
they did not remember a specific element of the library, such as,
time of development using the library and the approximate fre-
quency of commits that contains the library. The survey remained
open for three weeks in January 2019.

3 APPLICABILITY EVALUATION
In this section, we present the results of the applicability evaluation
of the study aiming to verify the feasibility of library expert identi-
fication. We analyzed 16,703 software systems mined from GitHub
and 9 libraries: Hibernate, Selenium, Hadoop, Spark, Struts, GWT,
Vaadin, Primefaces, and Apache Wicket. In addition, we analyzed
data from more than 1.6 million developers who have contributed
to these projects in our dataset. Table 7 shows the results of top-10
library experts in 9 bar charts. The black columns show the results
for the Number of Commits metric; the grey columns refer to the
Number of Imports metric; finally, the white columns show the
results regarding the Lines of Code metric.

The values of data presented in Table 7 are normalized between
0 to 1, and we identify each developer by the start name of library
followed by an identifier (e.g., HAD-1 means the first developer of
Hadoop). Due to privacy concerns, we are omitting the real name
of the identified developers. To obtain the main experts in each
library, we select the top-10 developers to present and discuss the
results in this section.

In general, it is possible to see from Table 7 that the metrics
Number of Imports and Lines of Code remained high (up to 60%)
for libraries GWT (Table 7–a), Hadoop (Table 7–b), Hibernate (Ta-
ble 7–c), Spark (Table 7–f), and Struts (Table 7–g). More specifically,
developers GWT-1, GWT-2, HAD-1, HAD-2, HAD-3, SPA-1, SPA-2,
and STR-1 to STR-8 achieved significant results for these 2 metrics.
This result suggests that these developers frequently make many
imports and write many LOC related to the particular library.

Regarding PrimeFaces (Table 7–d), Selenium (Table 7–e), and
Spark (Table 7-f) libraries, the Number of Commits metric (black
columns) stayed high in all cases (above 60%). For instance, the
Number of Commits metric remained at high levels (60%), for the
following developers and libraries: PRI-1 to PRI-7 from PrimeFaces
(Table 7–d), SEL-1 to SEL-6 from Selenium (Table 7–e) and SPA-3
to SPA-9 from Spark (Table 7–f). Consequently, projects that con-
tain these libraries own developers who are more active. However,
based only on the values of these metrics, we cannot state whether
developers are expert or not as discussed in the next section. There-
fore, we must combine Number of Commits with other metrics to
identify library experts, to promote more accurate results.

When we analyze the metric related to the number of commits
together with other metrics, we are able to identify library experts
with more precision. For instance, metrics Number of Commits,

Number of Imports, and Lines of Code combined show that devel-
opers SPA-1, SPA-2, and SPA-3 from Spark (Table 7–f), VAA-1 to
VAA-3 from Vaadin (Table 7–h), and WIC-1 fromWicket (Table 7–i)
possibly are very skilled since all metrics have high values for them.
Due to space constraints, we focus on the more relevant results.
However, the complete raw data are available. online 5

4 ACCURACY EVALUATION
In this section, we present the results of the accuracy evaluation
based on a survey with expert candidates in each library. The goal
of this evaluation is to verify the precision of the library expert
identification. We empirically selected 1,045 developers among the
top-20% values in at least two metrics. The questionnaire was sent
January 2019. After a period of 15 days, we obtained 137 responses
resulting in a response rate of about 15%. We asked the 137 de-
velopers about their software development experience in general
(background), and the use of the specific libraries investigated in
this paper. Each RQ is presented in specific sections. Section 4.1
discusses the general goal. Section 4.2 shows the results for RQ1.
Section 4.3 presents the results of RQ2. Finally, Section 4.4 reports
the results to RQ3.

Table 8 presents the setup of the experts’ candidates contacted to
answer our survey. This table has the following structure. The first
column (library) indicates the name of the analyzed library. The
second column (emails sent) shows the number of emails collected
and sent to expert candidates. The third column (email invalid)
presents the number of emails invalid which returned by the server.
In the fourth column (remaining emails) indicates the number of
valid emails. The fifth column shows the number of answers we
obtained for each library. Finally, in the last column, we show the
response rate of each library.

Table 9 reveals the participants’ background. It is worth high-
lighting that in some cases the percentage presented in Half of
the respondents (50% – first column) are graduated in Computer
Science, 42% have Masters degree and 7% Ph.D. degree (second
column). Note that more than half (51% – third column) of the
respondents are back-end developer. That is, a programmer who
creates the logical back-end and core computational logic of a web-
site, software or information system. Most of our respondents (71%)
have use the architecture Git (fourth column). Concerning time
dedicated to software development, 47% have more than 10 years
of experience, and less than 3% have less than 1 year of experience
(fifth column). Therefore, we can conclude that, in general, the
participants are not novices.

4.1 Overview
In this section, we present a overview of some relevant findings.

Our study shows that a significant amount of expert candidates
makes commits, when writing code related to a specific library,
performs many imports of particular libraries, and writes lines of
code in sequence when making an import of the library. Table 10
shows the results about knowledge that surveyed developers claim
to have in each library. The developers were invited to rank their
knowledge using a scale from 1 (one) to 5 (five), where (1) means no
knowledge about the library; and (5) means extensive knowledge
5https://tinyurl.com/scam2019

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil Oliveira et al.

Table 7: Top 20% from Library Experts

(a) GWT (b) Hadoop

(c) Hibernate (d) PrimeFaces

(e) Selenium (f) Spark

(g) Struts (h) Vaadin

(i) Wicket (j) Legend

How Well Do You Know This Library?
Mining Experts from Source Code Analysis SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

Table 8: Top 20% from Library Experts Selected to Answer
the Survey

Library Emails
sent

Invalid
email

Remaining
email # Answers %

GWT 160 18 142 31 0,22
Hadoop 181 33 148 11 0,07
Hibernate 155 10 145 16 0,11
Spark 138 19 119 11 0,09
Struts 42 2 40 9 0,23
Vaadin 107 18 89 15 0,17
PrimeFaces 30 1 29 9 0,31
Wicket 23 2 21 8 0,38
Selenium 209 31 178 27 0,15
TOTAL 1,045 134 911 137 0,15

about the library. If we analyze the data about the precision of the
strategy from the sum of levels 3, 4 and 5 of Likert-type scale, we
obtain on average 88,49% of accuracy in relation the knowledge
of the developers, i.e., identification is correct in more than 88%
of the cases. On the other hand, although a score three may repre-
sent an acceptable knowledge, if we followed a more conservative
criterion, only classifying as library experts the developers that
informed a higher (≥ 4) knowledge on the libraries, we obtain, on
average, 63,31% of precision. This way, we conclude that most of
the identified expert candidates identified by the strategy contain
high knowledge about the evaluated libraries. In contrast, to a level
of knowledge < 3, we achieved only 11,51% of the developers, i.e.,
possibly the strategy fails by selecting these developers.

More than 85% of the library experts who answered the survey
have a high knowledge about the evaluated libraries.

4.2 Number of Commits
In this section, we answer the first research question.
RQ1– How to evaluate the level of activity of a developer in a library?

To answer this research question, we asked the library experts
the following question. "How often are your commits related to
the <libray name> library"? Table 11 shows the results to this
question in the first column. For most libraries, the majority of the
participants answered theymade "few" commits using the evaluated
libraries. This way, if we evaluated the results obtained for this
label, it is possible to see that from 137 experts, 54% made "few"
commits. For instance, in the library Hibernate, 87% of developers
said they made few commits related to this library. Another library
that deserves special attention is Struts. In this library, 88% of the
developers responded that they made few commits. Regarding the
label "a lot", only 39% of experts polled said they performed many
commits. GWT was the library with a higher rate of answers to this
label (62%). Therefore, the numbers indicate that the metric Number
of Commits needs to be combined with other metrics to achieved
conclusive results about the skill from developers and even develop
other metrics to identify the level of activity ability.

Answer to RQ1. A large proportion of library experts make
"few" commits using the library. Therefore, we concluded that
the solo use of number of commits cannot identify library experts.

4.3 Number of Imports in General of Expert
Candidates

In this section, we answer the second research question.
RQ2– How to evaluate the knowledge intensity of a developer in a
library?

Regarding the number of imports to indicate a library expert,
we ask the developers the following question: "How often do you
include an import of <libray name> library in your commits?".
Table 11 shows the results in the second column to this question.
We analyze the number of imports performed by developers. The
main reason for this analysis is to evaluate the feasibility of inferring
the skills of the developers from the types of imports performed. In
general, the label "few" and "a lot" are tied or with little difference
between them. For example, Hibernate, Spark, and PrimeFaces have
practically tied. These libraries did not show significant differences;
in some cases, the difference was only of 1 absolute point. In only
three cases, the label "a lot" remained significantly higher: GWT
(83%), Vaadin (67%) and Selenium (78%).

From 137 experts, 68% said that they made "a lot of imports".
However, the number informed by the experts indicates that this
metric requires a combination with other metrics to achieve bet-
ter results, because 32% of experts said they made few imports to
libraries evaluated. Therefore, from the survey results, the met-
ric Number of Imports, as well as the metric Number of Commits, are
not able to identify library experts, when we apply one at a time.

Answer to RQ2. The metric Number of Imports is not able to
identify library experts, when we use it alone. The imports
achieved lower overall results in most cases.

4.4 Number of Lines of Code
In order to evaluate the metric Lines of Code, we present the third
research question as follows.
RQ3– How to evaluate the knowledge extension of a developer in a
library?

In this research question, we analyze the developers skill from
the number of LOC related to library. We evaluate the number LOC
implemented by a developer to specific library. For this purpose, we
asked the library experts from the survey the following question.
"How much of your code is related to the <libray name> library
when you perform a commit?". Table 11 shows the results from third
column to this question. The libraries GWT, Wicket, Selenium, and
Hadoop for instance, obtained 74%, 71%, 70%, and 64% respectively
to label "a lot".

We noted, however, the label "a few" also remained at a high
level in some cases, for instance, the libraries Struts (88%) and Spark
(55%). In fact, the library Hibernate remained tied to labels "a few"
and "a lot". In general, from 137 experts, 39% said they write "a few"
LOC and 61% write "a lot" LOC with respect to libraries. Therefore,
it is possible to infer that the metric Lines of Code alone also does
not provide indications about developer skills, although this metric
achieved better precision then the metric Number of Commits.

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil Oliveira et al.

Table 9: Respondents’ Background

What is your highest level of
education?

In which course are you grad-
uated?

How many years have you
dedicated to the software de-
velopment?

How often do you use Git? Which role do you usually
play when developing appli-
cations?

Table 10: Level of Knowledge in Each Library

Library Likert scale Total 4-5 3-4-51 2 3 4 5
GWT 1 1 4 9 16 31 81% 94%
Hadoop 0 1 3 4 3 11 64% 91%
Hibernate 1 3 8 3 3 18 33% 78%
Spark 0 1 4 2 4 11 55% 91%
Struts 2 2 1 4 0 9 44% 56%
Vaadin 0 2 5 3 5 15 53% 87%
PrimeFaces 0 0 4 4 1 9 56% 100%
Wicket 1 0 2 4 1 8 63% 88%
Selenium 0 1 4 13 9 27 81% 96%

Answer to RQ3. According to our analysis, the metric Lines of
Code alone cannot reliably provide indications about developers’
skills. However, it achieved in general, results better than the
metric Number of Commits.

5 THREATS TO VALIDITY
We based our study on related work to support evaluation of a
strategy to identify library experts. Regarding the evaluation, we
conducted a careful empirical study to assess efficiency of the strat-
egy from software systems hosted from GitHub. The strategy eval-
uated is able to analyze source code from platforms that follows
the Git architecture. However, some threats to validity may affect
our research findings. The main threats and respective treatments
are discussed below based on the proposed categories of Wohlin et
al. [26].

Construct Validity. This validity is related to whether measure-
ments in the study reflect real-world situations [26]. Before running
the strategy, we conducted a careful filtering of software systems
from GitHub repositories. However, some threats may affect the
correct filtering of systems, such as human factors that wrongly
lead to the discard of a valid system to be evaluated. Considering
that the exclusion criteria to system selection were applied in a
manual process, we may have discarded interesting systems that

we identified as non-Java, for instance.

Internal Validity. The validity is related to uncontrolled aspects
that may affect the strategy results [26]. The strategy may be af-
fected by some threats. To treat this possible problem, we selected a
sample of 5 software systems that contains the library Hadoop from
our dataset, with a diversified number of LOC. Then, we manually
identified the number of commits from the GitHub repository, the
number of imports and the number of LOC codified to the specific
library. We compared our manual results with the results provided
by the tool and observed a loss of 5% in metrics terms computed
through the automated process. We believe that this error rate do
not invalidate our main conclusions.

External Validity. This validity is related to the possibility to
generalize our results [26]. We evaluated the strategy with a set
of 16,703 software projects from GitHub. Considering that these
systems may not include all existing libraries, our findings may
not be generalized. Furthermore, we evaluated the strategy with an
online survey with only 137 developers that implemented projects
with the investigated libraries. We analyzed the data with only 9
Java libraries. However, we chose the top libraries from the survey
reported by StackOverflow in 2018 with over 100,000 responses
developers around the world. This way, we believe these libraries
can represent the reasonable option to evaluate the strategy.

6 RELATEDWORK
The use of data from GitHub to understand how software develop-
ers work and collaborate has become recurrent in software engi-
neering studies [6, 9, 16, 21]. Some studies seek to understand the
behavior of developers concerning interaction with their peers [16].
For example, a few studies [16, 17] tried to understand who are
the developers with peaceful behavior and those with aggressive
behavior and if these developers coexist productively in software
development projects [17]. Similar studies also tried to understand
if there is a relationship between bug resolution time and behavior
of developers [16]. Also, some studies investigated developers man-
ners [6] and seek to understand the emotional behavior of software
developers [17].

In a close related work, Greene and Fischer [9] have developed an
approach to extract technical information from GitHub developers.

How Well Do You Know This Library?
Mining Experts from Source Code Analysis SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

Table 11: Survey Results

Library Number of Commits (RQ1) Number of Imports (RQ2) Lines of Code (RQ3)

GWT

Hadoop

Hibernate

Spark

Struts

Vaadin

PrimeFaces

Wicket

Selenium

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil Oliveira et al.

The work of these researchers also does not differentiate developers
from their level of knowledge of technical skills, since a recruiter
has several candidates for the same job position. In addition, such
work only shows the profile of the users in GitHub, and it does
not extract other characteristics of their knowledge and skills. The
other limitation is that they do not provide actual data about the
developer’s knowledge production and neither presented a survey
in order to evaluate the results. Singer et al. [21] investigated the
use of profile aggregators in the evaluation of developer skills by
developers and recruiters. However, these aggregators only gather
skills for individual developers, and it is not clear how they support
the identification of relevant developers from a large dataset.

We believe that the strategy evaluated in our study is complemen-
tary to the described related work, providing a different approach
focusing on the identification of possible experts. To the best of
our effort, we did not find a similar large scale study that evaluates
some strategy able to identify library experts. Hence, we cannot
compare the strategy evaluated to other studies.

7 CONCLUSION
In this paper, we evaluated a strategy to identify library experts in
software systems. We also presented a prototype tool that imple-
ments the strategy. The strategy evaluated is composed of three
metrics: Number of Commits, Number of Imports and Lines of Code.
We evaluated the strategy in two dimensions, applicability and ac-
curacy. First, Applicability Evaluation analyzed the feasibility of
identifying library experts candidates. Second, Accuracy Evaluation
compared the results provided by a strategy with developers from
a survey on GitHub. In total, we analyzed 16k software systems
mined from GitHub, 9 libraries and a survey with 1,045 developers.
Our findings point that the strategy was able to identify library
experts in different libraries from the set of input software systems
with precision of 88% in average.

There are many possible extensions for this work. For instance,
we did not consider all the available data in our analysis, such as
the number of forks, number of projects belonging to the developer
that have received stars, the number of followers, number of meth-
ods, source code quality, and contributions in project discussions.
Besides, we did not consider the number of lines of code added
and removed between versions. Future work can also extend our
research to evaluate the strategy to other languages and libraries.

8 ACKNOWLEDGMENTS
This research was partially supported by Brazilian funding agencies:
CAPES, CNPq (424340/2016-0), and FAPEMIG (PPM-00651-17).

REFERENCES
[1] G. Avelino, L. Passos, F. Petrillo, and M. T. Valente. Who can maintain this

code? assessing the effectiveness of repository-mining techniques for identifying
software maintainers. IEEE Software, 1(1):1–15, 2018.

[2] A. Capiluppi, A. Serebrenik, and L. Singer. Assessing technical candidates on the
social web. IEEE software, 30(1):45–51, 2013.

[3] E. Constantinou and G. M. Kapitsaki. Identifying developers’ expertise in social
coding platforms. In 42th Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA), pages 63–67, Limassol,Cyprus, 2016. IEEE.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Trans-
parency and collaboration in an open software repository. In 12th Proc. of the

Conf. on Computer Supported Cooperative Work (CSCW), pages 1277–1286, Seattle,
Washington, USA, 2012.

[5] V. Damasiotis, P. Fitsilis, P. Considine, and J. O’Kane. Analysis of software
project complexity factors. In Proc. of the 2017 International Conf. on Management
Engineering, Software Engineering and Service Sciences, ICMSS ’17, pages 54–58,
New York, NY, USA, 2017. ACM.

[6] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M. Marchesi, and R. Tonelli. Software
development: do good manners matter? PeerJ Computer Science, 2(2):1–10, 2016.

[7] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical
methods for software engineering research. In Guide to advanced empirical
software engineering, pages 285–311. 2008.

[8] V. C. Garcia, D. Lucrédio, A. Alvaro, E. S. D. Almeida, R. P. de Mattos Fortes, and
S. R. de Lemos Meira. Towards a maturity model for a reuse incremental adoption.
In Proc. of the VII Brazilian Symposium on Software Components, Architectures,
and Reuse, SBCARS ’07, pages 61–74, Recife,PE, Brazil, 2007. ACM.

[9] G. J. Greene and B. Fischer. Cvexplorer: Identifying candidate developers by min-
ing and exploring their open source contributions. In Proc. of the 31st IEEE/ACM
Int. Conf. on Automated Software Engineering, ASE 2016, pages 804–809, New
York, NY, USA, 2016. ACM.

[10] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging role of data
scientists on software development teams. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 96–107, New York, NY, USA,
2016. ACM.

[11] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich. Do you remember
this source code? In 40th Proc. of the International Conf. on Software Engineering
(ICSE), pages 764–775, Gothenburg, Sweden, USA, 2018.

[12] J. Marlow and L. Dabbish. Activity traces and signals in software developer
recruitment and hiring. In 16th Proc. of the 2013 Conf. on Computer supported
cooperative work (CSCW), pages 145–156, San Antonio, Texas, USA, 2013.

[13] P. McCuller. How to recruit and hire great software engineers: building a crack
development team. Apress, 2012.

[14] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach to iden-
tifying expertise. In 24rd Proc. of the International Conf. on Software Engineering
(ICSE), pages 503–512, Orlando, FL, USA, 2002.

[15] J. E. Montandon, L. L. Silva, and M. T. Valente. Identifying experts in software
libraries and frameworks among GitHub users. In 16th International Conference
on Mining Software Repositories (MSR), pages 1–12, 2019.

[16] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli. Are
bullies more productive?: empirical study of affectiveness vs. issue fixing time.
In 12th Proc. of the Working Conf. on Mining Software Repositories (MSR), pages
303–313, Florence, Italy, 2015.

[17] M. Ortu, G. Destefanis, S. Counsell, S. Swift, R. Tonelli, andM.Marchesi. Arsonists
or firefighters? affectiveness in agile software development. In 18th International
Conf. on Agile Software Development (XP), pages 144–155, Porto, Portugal, 2016.

[18] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: Part 1: Turning
lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26(6):16–18, Nov. 2001.

[19] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo. Mining software repositories
to identify library experts. In Proceedings of the VII Brazilian Symposium on
Software Components, Architectures, and Reuse, SBCARS ’18, pages 83–91, New
York, NY, USA, 2018. ACM.

[20] R. Saxena and N. Pedanekar. I know what you coded last summer: Mining
candidate expertise from GitHub repositories. In 17th Companion of the Conf.
on Computer Supported Cooperative Work and Social Computing (CSCW), pages
299–302, New York, NY, USA, 2017. ACM.

[21] L. Singer, F. F. Filho, B. Cleary, C. Treude, M.-A. Storey, and K. Schneider. Mutual
assessment in the social programmer ecosystem: an empirical investigation of
developer profile aggregators. In 13th Proc. of the Conf. on Computer supported
cooperative work (CSCW), pages 103–116, San Antonio, Texas, USA, 2013.

[22] I. Sommerville. Software Engineering. Pearson, 2015.
[23] J. Tong, L. Ying, T. Hongyan, and W. Zhonghai. Can we use programmer’s

knowledge? fixing parameter configuration errors in hadoop through analyzing
q amp;a sites. In 5th IEEE Int. Congress on Big Data (BigData Congress), pages
478–484, San Francisco, CA, USA, 2016.

[24] F. Tsui, O. Karam, and B. Bernal. Essentials of software engineering. Jones &
Bartlett Learning, 2016.

[25] M. Viggiato, J. Oliveira, E. Figueiredo, P. Jamshidi, and C. Kästner. Understanding
similarities and differences in software development practices across domains. In
Proceedings of the 14th International Conference on Global Software Engineering,
ICGSE ’19, pages 74–84, Piscataway, NJ, USA, 2019. IEEE Press.

[26] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experi-
mentation in Software Engineering. Springer Publishing Company, Incorporated,
2012.

[27] C. Ye. Research on the key technology of big data service in university library. In
13th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), pages 2573–2578, Guilin, China, 2017.

	Abstract
	1 Introduction
	2 Study Settings
	2.1 Goal and Research Questions
	2.2 Evaluation Steps
	2.3 Dataset
	2.4 Identification of Library Experts
	2.5 Tool Support
	2.6 Survey Design

	3 Applicability Evaluation
	4 Accuracy Evaluation
	4.1 Overview
	4.2 Number of Commits
	4.3 Number of Imports in General of Expert Candidates
	4.4 Number of Lines of Code

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

