
Understanding Similarities and Differences in
Software Development Practices Across Domains

Markos Viggiato1, Johnatan Oliveira2, Eduardo Figueiredo2, Pooyan Jamshidi3, Christian Kästner4
1Dept. of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

2Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
3Computer Science and Engineering Department, University of South Carolina, Columbia, United States

4Institute for Software Research, Carnegie Mellon University, Pittsburgh, United States

viggiato@ualberta.ca, {johnatan.si, figueiredo}@dcc.ufmg.br, pjamshid@cse.sc.edu, kaestner@cs.cmu.edu

Abstract—Since software engineering is globalized and not a
homogeneous whole, we expect that development practices are
differently adopted across domains. However, little is known
about how practices are followed in different software domains
(e.g., healthcare, banking, and Oil and gas). In this paper, we
report the results of an exploratory and inductive research,
in which we seek differences and similarities regarding the
adoption of several widespread practices across 13 domains. We
interviewed 19 worldwide developers with experience in multiple
domains (i.e., cross-domain developers) from large multinational
companies, such as Facebook, Google, and Macy’s. We also run
a Web survey to confirm (or not) the interview results. Our
findings show that, in fact, different domains adopt practices
in a different fashion. We identified that continuous integration
practices are interrupted during important commerce periods
(e.g., Black Friday) in the financial domains. We also noticed the
company’s culture and policies strongly influence the adopted
practices, instead of the domain itself. Our study also has
important implications for global software engineering practices.
For instance, companies should provide targeted training for
their development teams and new interdisciplinary courses in
software engineering and other domains, such as healthcare, are
highly recommended.

Index Terms—Software Domains, Development Practices, In-
terview Study, Cross-domain Developers

I. INTRODUCTION

Software development practices play an important role

in the quality of the final software product [1, 2, 3, 4].

This subject has captured the attention from both academia

and practitioners [4]. In fact, several approaches have been

proposed aiming at providing ways for developers to follow

the best global practices in specific domains, such as de-

sign patterns [5], agile methodologies [6], and more recently

continuous integration and DevOps [7, 8, 9]. Furthermore,

some previous works have focused on the investigation of

a single practice [3, 10]. However, differences in domains’

characteristics have not been considered in many cases (such

as software development in industry and software engineering

education). Current investigation of widespread development

practices also considers software engineering as a homo-

geneous field, contrasting with previous findings, such as

indicated by Murphy-Hill et al. [11]:

In a larger sense, this work represents a step to-
wards understanding software development not as a
homogeneous whole, but instead as a rich tapestry

of varying practices involving diverse people across
diverse domains.

In this paper, we use practice as a general term to refer to

the way software is developed and its characteristics as well,

which includes not only the software development phase, but

also design, maintenance and evolution phases. For instance,

we may use practice to refer to a well-established software

development methodology (e.g., agile) or a specific way of

adopting continuous integration during software development.

Despite the relevance of global software development prac-

tices, there is little exploratory research aiming at charac-

terizing how these development practices are adopted across

domains and little is known regarding which practices are

applied (and how they are applied) in different software

domains.

Shedding light on how and which practices are adopted is

important for many reasons. First, practitioners will benefit

from our results as we provide insights about development

practices in software domains. For instance, this may be

helpful for professionals and companies that are migrating

to a new domain as they will be aware of the common

practices and their use in that domain. Companies can also

provide targeted training for their teams based on development

practices adopted in the domain of interest. For instance, e-

commerce companies do not uniformly use continuous inte-

gration practices throughout the year as they avoid releasing

code changes in periods of high amounts of sales. In such

case, developers should be instructed to only release code that

is critical for the business. Furthermore, new customized tools

may be developed targeting developers from specific domains

as there is a need for domain-aware tools [12]. Second, the

research community may also benefit from our study. Future

researches may gain more generalization, since the results for

one case (e.g., the investigation of a specific practice for one

domain) may generalize for other software domains. Finally,

software engineering education may take specific development

practices into account as different domains have different

development practices. For instance, a new branch of the

software engineering course focused on game development

may be suitable since this domain differs in many aspects from

non-game software development [11]. New interdisciplinary

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

courses should also be thought for specific domains [13].

Our goal in this paper is to understand how development

practices globally used by different companies differ in dif-

ferent software domains and whether there are specificities

in their use, i.e., we aim to verify whether developers from

different domains can adapt development practices to their

specific context. We hypothesize that some domains may have

similarities in the use of development practices and we also

believe some domains may adopt practices in such a specific

way that makes them very different from the others. However,

works so far have not focused on the differences of domains

regarding global development practices. In addition, previous

studies have not investigated the adoption of development

practices based on the perception of cross-domain developers,

as we do here. In this paper, we adopt an exploratory and

inductive research [14, 15, 16, 17] to seek for differences and

similarities of several practices across 13 domains. To guide

our study, we defined the following research questions:

• RQ1: Which development practices are similar across
domains?

• RQ2: Which development practices are specific to do-
main?

• RQ3: Which factors may impact the adoption of devel-
opment practices in different software domains?

To answer the research questions, we designed an ex-

ploratory, qualitative study in which we interviewed worldwide

cross-domain professionals who have worked in more than

one domain in the software industry. We argue (Section III)

that developers with experience in more than one domain

are capable of indicating differences in development practices

with more confidence. We conducted 19 semi-structured in-

terviews with developers from 13 software domains, such as

social networks, healthcare, banking, e-commerce and games.

Afterwards, we transcribed the recorded interviews looking

for interesting themes. We then validated interview findings

through a Web survey with developers around the world.

It is important to highlight that cross-domain developers

were difficult to be found and contacted, specially in some

domains (e.g., aviation), in which we believe developers are

highly specialized. In this paper, we do not present results

regarding domains in which we believe the saturation was not

reached. We briefly present interesting findings regarding those

domains in Section V-C and emphasize the need for further

investigation. We noted that 19 interviews were sufficient to

reach the theoretical saturation [14], similarly to previous

studies [11, 18, 19, 20]. For instance, when interviewing

the 7th e-commerce developer, all information provided by

the interviewee was known by interviewers as previous e-

commerce participants already provided them.

Our findings suggest many differences. For instance, e-

commerce developers usually avoid releasing code in periods

of the year when there is large financial transactions. This

means the interruption of continuous integration and con-

tinuous delivery practices within that domain. Furthermore,

healthcare developers mentioned that requirements elicitation

is easier in comparison to other domains as health profes-

sionals usually have a higher degree of education. However,

this result was not confirmed by the survey participants, that

mostly disagree with it (50%) or are neutral (10%). Although

this can be seen as a negative result, it is important to note

that negative or unexpected results may be found through

exploratory studies. We also found other interesting results,

such as the fact that social network domain does not have

dedicated test teams. Instead, developers test and fix bugs

themselves, using a code-owner approach.

The remainder of this paper is structured as follows. Sec-

tion II presents related works. Section III explains how we

designed our research. In Sections IV and V, we present the

results and discussions, respectively. Section VI shows threats

to validity and Section VII concludes the work and discusses

next steps.

II. RELATED WORK

Several studies have been proposed within the context

of software development practices [1, 2, 3] and software

domains [21, 22, 23, 13]. Regarding studies within the context

of software domains, Murphy-Hill et al. [11] presented a

study comparing game development to traditional software

development. The work indicated substantial differences be-

tween video game development and other software devel-

opment segments, such as the rare use of automated tests

in game development. Richardson et al. [13] noticed that

regulations and directives regarding medical device software

were not being taken into account, and unregulated software

was developed and used in healthcare organisations. This

was a result of not trained software engineers, who lacked

knowledge in regulations of software solutions for healthcare.

The authors recommended that healthcare software systems

should be developed by professional software engineers in

interdisciplinary teams with healthcare professionals. Russo

et al. [22] aimed at identifying some relevant concerns in

the Italian banking IT sector, through an investigation of the

opinions of several stakeholders. The authors identified 15

concerns, which were discussed in a framework inspired by

the ISO 25010 standard.

Segura et al. [21] explored the applicability of some of the

practices for variability management in software product lines

to an e-commerce website. The authors used a feature model

to represent the store input space and techniques for the auto-

mated analysis of feature models for the detection and repair of

inconsistent and missing configuration settings. Their findings

suggest that variability techniques could successfully address

many of the challenges found when developing e-commerce

websites. Other studies investigated development practices

without focusing on specific software domains. Wright and

Perry [2] reported the initial results of a study in which

the authors interviewed 4 practicing release engineers to

understand the faults and failures of release practices, how

companies recover from them and how to predict and avoid

the failures in the future. Their preliminary results indicate

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

that a more thorough process analysis and efforts at process

standardization are necessary.

Unlike all previous works discussed above, in this paper

we interview cross-domain professionals (i.e., developers who

have worked in more than one target domain) with the aim

of identifying development practices that are similar across

domains and practices that are particular to specific software

domains. To the best of our knowledge, this is the first

exploratory study to investigate development practices across

several domains by interviewing cross-domain developers. Our

work also can be seen as a complementary study to the

previous ones as we provide a more thorough insight of how

development practices are being used in industry across several

domains.

III. RESEARCH DESIGN

A. Software Domains

We selected a set of software domains for our study based

on previous works [22, 24, 13, 11], i.e. we selected domains

which were already subject of research and, therefore, we

believe they are well-known in the global software engi-

neering community and easily understandable by industry

professionals. Furthermore, we believe it is feasible to find

worldwide software developers who have worked in such

domains through our participant search procedure. Initially,

we selected the following 13 domains: accounting, aviation,

banking, business, e-commerce, educational, games, health-

care, mining, oil and gas, search engine, social network, and

stock market.

B. Methodology

We conduct a qualitative study to help us better understand

how global software development practices are used in differ-

ent software domains. We follow an inductive research strat-

egy, using a grounded, iterative approach to let development

practice patterns of usage emerge from the interviews [25, 17].

This means we do not have previous categories to classify

the use of development practices in different domains. To

achieve our goal, we conducted semi-structured interviews

with software professionals from industry with experience in

multiple domains. The research methodology is composed of

five stages: (i) participants selection in LinkedIn; (ii) interview

design; (iii) conduct of interviews; (iv) transcription analysis;

and (v) validation through a Web survey. The last stage was

executed to confirm (or not) the main findings for domains in

which we reached saturation. We noticed that 19 interviews

were sufficient to gather interesting information regarding the

adoption of development practices in different domains and

to reach the saturation in some domains. In fact, previous

interview studies performed a similar number of interviews,

such as Murphy-Hill et al. [11] (14 interviews), Stacey and

Nandhakumar [18] (20 interviews), Burger-Helmchen and

Cohendet [19] (8 interviews), and Dagenais and Robillard

[20] (22 interviews). We stopped conducting interviews as new

interviews with participants from the following domains were

not bringing new information: banking (with 6 interviews),

e-commerce (with 8 interviews), and healthcare (with 5 inter-

views). Therefore, in this paper, we focus on presenting results

from the aforementioned domains and we briefly indicate

interesting findings from domains in which we have not yet

reached the saturation (Section V-C), namely: oil and gas and

social networks.

C. Interview Process

Our interview process is iterative and we use the open

coding technique from grounded theory [14, 15, 26, 16]. The

interview phases are simultaneous, i.e., the stages overlap. For

instance, while conducting interviews with some participants,

we may also continuously select additional participants and

iteratively build the interview script according to the previous

interviews. Next, we describe each stage in detail.

Participants selection. We propose an innovative method

to select the interview participants, which is an important

contribution of our work. We selected only cross-domain

developers from global software industry, i.e., developers

who have worked in more than one software domain. This

selection criterion makes sure the developer has experienced

more than one domain and, therefore, can confidently state

the differences in the development practices’ adoption. Ta-

ble I presents information regarding the domains to which

participants belong and years of experience with software

development. We anonymously identify each participant by

using the letter P followed by an identifier number (e.g.,

P1, P2, and so on until P19). On average, the interviewees

have 11.7 years of professional experience and most holds at

least one postgraduate degree, including masters and doctorate.

Most of the interviewees currently work or have worked as

developers for large multinational companies, with thousands

of employees and whose services and products reach millions

of users, such as Facebook, Google, Macy’s, General Electric,

and Petrobras. In addition, the participants workplaces are

distributed around the world, such as participants who are

currently working in the United States, Canada and Brazil.

Some participants have experience in three or even four

domains and for such cases we decided to do the interview

with respect to the domains in which developers have the most

experience.To check that participants were in fact cross-domain, we

carefully and manually inspected their LinkedIn accounts and

we selected only developers who have worked in companies or

projects within the targeted domains. In addition, developers

should have at least 5 years of professional experience and 1

year of work within each domain. By following these criteria,

we believe participants’ statements are more confident regard-

ing similarities and differences in adopted practices, which

also brings more confidence to our results. We started with

an opportunistic selection through a search in our LinkedIn

contact lists. Furthermore, we implemented an algorithm to

automatically look for software developers from each domain

by performing text analysis on the developer LinkedIn. The

algorithm returns the developers’ name and LinkedIn account,

which were manually validated by two authors. This double-

checked procedure helps to ensure that all participants meet the

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
INTERVIEWEES INFORMATION.

Participant Experience (Years) Domain 1 Domain 2

P1 20 Banking Healthcare
P2 9 Accounting E-commerce
P3 8 E-commerce Social Network
P4 10 E-commerce Education
P5 12 Healthcare Oil and Gas
P6 10 E-commerce Search Engine
P7 16 Banking E-commerce
P8 9 Education Healthcare
P9 11 Accounting E-commerce
P10 25 Banking Mining
P11 7,5 Games Mining
P12 16 Banking Games
P13 5 Aviation Healthcare
P14 17 Banking Stock Market
P15 7 Healthcare Stock Market
P16 15 Business Stock Market
P17 8 Accounting Education
P18 8 Banking E-commerce
P19 10 Accounting E-commerce

defined selection criteria. We contacted developers by email

(when available anywhere online, such as on GitHub) or by

the LinkedIn InMail functionality. The process of selecting

candidates for the interviews took too long due to the manual

validations and mainly the difficulty of findings cross-domain

developers with experience in at least two domains. Finding

cross-domain developers is even harder in some specific

domains (e.g., aviation), as developers from these domains

are highly specialized and usually do not have experience in

other domain of our interest. We sent 62 emails to the cross-

domain developers we identified and validated in LinkedIn,

and we received confirmations from 24 developers. However,

5 developers declined later due to concerns regarding their

companies’ private information, even though we made it clear

all the process would be anonymized and we were trying to

understand general practices adopted. Thus, we interviewed

19 developers (response rate of 31%).

Interview design. To guide us during the interviews, we

iteratively developed an interview script, which is composed

of three main sections: background of the participant, gen-

eral questions regarding differences in use of the software

development practices, and specific questions regarding a set

of practices, such as software testing and DevOps practices.

Through the first section, we are interested in participants

academic and professional background, such as the bachelor’s

degree, the highest academic degree, and years of experience.

In the second section of the interview, we asked general

questions regarding differences in software domains. In this

part, we are interested in getting the participant’s perception

about the development practices in different domains without

biasing our specific questions. Finally, in the last section, we

asked specific questions about some development practices.

In this section of the interview, we focus on the topics not

mentioned by the interviewee in the second section in order

to cover all target development practices. Our questions cover

the following practices: releasing practices (e.g., regarding

the deadlines of product releasing), quality assurance (which

included test practices), code review practices, continuous in-
tegration and delivery, version control practices, and practices
related to the software architecture, such as whether the team

is aware and discusses architectural impacts caused by changes

in the system [27].

Conduct of the interviews. After the usual consent process

with each participant, we start the interview, planned to last

no more than 40 minutes. We observed this period was

sufficient to do a concise interview, since we could collect

all information we needed. We also recorded all interviews

with the consent of the participants. Most interviews were con-

ducted through a conversation on Skype. However, when the

participant was not available due to agenda incompatibility, we

sent out the interview by email, doing a follow-up whenever

necessary (e.g., to better understand some responses).

Interview transcription analysis. The last stage of the inter-

view process is the transcription and analysis of the interview

to extract all relevant information. Here we used the open

coding technique. The first author of the paper carefully

analyzed the transcriptions and came up with the most relevant

and groundbreaking topics stated by the interviewees, which

were discussed afterwards by all authors of the paper.

D. Survey Validation

To check whether practices mentioned by interviewees are

in fact broadly adopted by developers from each domain,

we designed an online survey. It is important to note that

we validated adopted practices only for software domains

in which we reached the saturation, which occurred for the

following domains: banking (6 interviewees), e-commerce (8

interviewees), and healthcare (5 interviewees). The survey is

composed of two main sections: background (common to all

surveys) and questions regarding a software domain (specific

to the survey of each domain). Through the first section,

we intended to collect information related to the participants

background such as education, software development experi-

ence and development experience within the specific domain.

The second section contains concise and objective statements

that present characteristics and adopted practices within the

domains, as indicated by the interviewees. In this section, the

survey participant is asked to indicate the agreement with the

statement through a Likert-type scale.

To find participants for the survey, we first mined global

software repositories related to the target domains from

GitHub in order to collect the names and emails from top-

committers. We used specific search strings to make sure

the repositories belong to the domains of our interest. To

retrieve repositories from the banking domain, we used bank,

and banking strings; for the e-commerce domain, we used

e-commerce, e-commerce and electronic commerce strings;

finally, for the healthcare domain, the following strings were

used: healthcare, and health. Then, the repositories were

manually validated to certify they are in fact software systems

and they really belong to the domain. Finally, we automatically

collected the name and email of top-committers (number of

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

commits greater than 100) from repositories so that we could

send the survey by email. We believe users with more than

100 commits have sufficient knowledge within the domain

and therefore are capable to answer our survey. With this

procedure, we do not aim to find an extensive list of systems

and committers. Instead, our goal is to find a representative

number of worldwide developers with a good knowledge in

the domain (top-committers) to answer our survey. We had

to discard a very large number of committers since they did

not meet our criteria of 100 commits and possibly were not

capable of confidently answering the survey. In addition to this

strategy, we searched for additional participants in LinkedIn

since GitHub does not contain many popular repositories

that meet our criteria (belonging to specific domains and

developers with more than 100 commits). We looked for

worldwide developers from the three domains within LinkedIn

and sent the survey by email. After sending 329 emails, we

received 37 complete responses from participants worldwide

(response rate of approximately 11%), being 12 for banking,

14 for e-commerce and 11 for healthcare.

IV. RESULTS

In this section, we report results from the interviews we

conducted. Note that we present interview quotes that are

supported by at least three interviewees from different com-

panies. In parallel, we report the percentages of agreement (or

disagreement) of survey participants regarding each practice

reported by interviewees. Figure 1 shows a summary of our

main results obtained from the interviews, which are discussed

in Sections IV-A, IV-B, and IV-C. Rectangles indicate do-

mains and ellipses indicate practices (e.g., continuous integra-

tion practices) or characteristics (e.g., interoperability). Arrows

indicate which domains are related to practices/characteristics

and arrow labels show how that practice/characteristic is

adopted in that domain (e.g., continuous integration is inter-

rupted in the banking domain) as reported by interviewees.

Table II presents an overview of the survey results for the

statements regarding characteristics and adopted practices in

each domain. The first column shows the statements presented

to participants. Each statement is identified by a unique label.

For instance, we use S1.B to identify the first statement of the

banking survey. The second column presents the Likert distri-

bution of the participants agreement regarding each statement.

A. Banking Domain
Continuous integration interruption. Interviewees from the

banking domain often mentioned they are more careful with

dates when financial transactions increase, mainly in the end

of the year and beginning of each month. As a contrast to

other domains, banking developers pointed out that in such

periods they do not release large code changes to the servers,

interrupting the continuous integration process in order to

avoid inserting bugs in the systems during critical periods.

They also stated that the priority is to fix bugs. Participant

P10 said the following quote (supported by P1, P7, and P12):

Most of the banks have a freeze period about 30 days
before the new year, when just emergency software
updates are allowed.

Besides Black Friday and new years period, participants

also mentioned that development is modified prior to salary

payments, when the traffic is usually high. Below, a quote from

P18 with support of P1 and P7 (note that salaries are paid in

the beginning of the month in the participant’s country, which

may not be the case for other locations):

We usually do not release large code changes to
the server in the first days of the month, just before
salary payments.

According to the banking survey, 58.3% of participants

agree with this practice (scores 4 and 5), while only 16.6%

disagree (scores 1 and 2). In addition, 25% of participants were

neutral (score 3). The survey responses indicate that developers

usually adopt this practice in banking development.

Moderated regulatory demands. Developers also high-

lighted that banking systems are regulated by legal demands

that come from the government, which is not common in other

software domains. Hence, one common practice is to change

the code to comply to a regulatory demand, such as stated by

P10 and supported by P1 and P4:

Most of the time was used to enhance an existing
feature, add a new one or comply to a regulatory
change.

According to the banking survey, 83.3% of participants

agree with this practice (scores 4 and 5), while only 16.7%

are neutral (score 3). No respondents disagrees. The responses

indicate that in fact the banking domain requires specific

changes (besides usual ones) to comply to regulatory demands.

Overly complex requirements. Another characteristic of

the banking domain is regarding requirements engineering

practices. Developers from banking often said that under-

standing what stakeholders really want may be difficult due

to the context where the system will operate, many times

requiring the understanding of financial terms. Participant P10

mentioned (supported by P14 and P18):

...it is hard to understand and put everything to-
gether because it involves abstract, complex, and
structured financial operations.

According to the banking survey, 83.4% of participants

agree with this practice (scores 4 and 5), while only 8.3% are

neutral (score 3) and 8.3% partially disagree (score 2). The re-

sponses strongly indicate the high complexity of requirements

elicitation in the banking domain.

B. E-commerce Domain
Continuous integration interruption. Similarly to the bank-

ing domain, e-commerce developers also adopt practices of

interrupting continuous integration, according to our intervie-

wees. However, in this case, software development is oriented

to commerce important dates, when the amount of sales in-

crease. In such periods, participants mentioned that the priority

is to fix bugs and give the best experience for users. Therefore,

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

��������	�
���

�	��

�������

�������	
�
��
����

�	�����	��
�����
���	�

������
�������

�	��
������
������� ����

����	�

����

����	�

�����
�
����
����
�������

�
�������	���
��

���
�����
�����

����

 �
�	

������	���
�
����
���������	���	
����

����������	��
���	��

����
	��
�!�����

���������

Fig. 1. Main adopted practices in domains. Banking domain is moderately regulated and interrupt continuous integration process in important commerce
periods (e.g., Black Friday); e-commerce follows an user-centered development, focusing on non-functional requirements that provide a good user experience
and also interrupt continuous integration process; and healthcare is highly regulated, focuses on patient data privacy and security and requirements elicitation
may be easier than in other domains.

TABLE II
SURVEY RESULTS WITH PRESENTED STATEMENTS AND LIKERT-SCALE AGREEMENT DISTRIBUTION.

Banking

S1.B - Code changes are less frequently released in periods of the year when large financial transaction are performed.

S2.B - The banking segment is moderately regulated, many times requiring changes in the system to fulfill regulatory demands.

S3.B - Requirements elicitation is hard because it envolves the understanding of complex financial operations.

E-commerce

S1.E - Code changes are often not released in periods of high amount of sales, such as in Black Friday and Christmas.

S2.E - This segment focuses on user-centered non-functional requirements, such as usability, security and performance.

S3.E - Code is pushed into production with less frequency compared to other software segments.

Healthcare

S1.H - The healthcare segment is highly regulated, with frequent legal demands.

S2.H - Requirements elicitation is relatively easier compared to other segments

S3.H - Interoperability of systems from different workplaces is usually difficult.

S4.H - Privacy, reliability and security of patient data are major concerns in healthcare software.

developers may change their usual continuous integration

practices (i.e., they stop sending large changes to the servers)

aiming at focusing on the most important tasks, such as bug

fixing. A quote from P6 supported by P2, P4, P7 and P9:

We have code freezes a few weeks prior to holidays
seasons, when only critical or major bug fixes could
be introduced. A week prior to the holidays abso-
lutely no code was checked in unless critical to the
business.

According to the e-commerce survey, 83.4% of participants

agree with this practice (scores 4 and 5), while only 16.6%

disagree (scores 1 and 2). The high agreement percentage

suggests this practice is in fact widely adopted by e-commerce

developers.

Focus on user experience. According to e-commerce inter-

viewees, developers give a special attention to specific user-

centered non-functional requirements, mainly performance,

usability and security. According to them, the user-focused

development aims at providing the best user experience as

possible, since a low performance system may prevent the

user from concluding a purchase. E-commerce development

practices include stress tests to guarantee the system will

provide a good experience for users. P3 mentioned (supported

by P6, P18 and P19):

Performance is critical for user experience. We
have stress-test environments where the numbers
are pushed to limits (visits, users, transactions, and
many other metrics that could be extrapolated).

According to the e-commerce survey, 50% of participants

partially agree with this practice (score 4), while 50% are

neutral (score3). This may indicate that focusing on the user-

experience is a generic characteristic, being important in other

domains as well.
Less frequent continuous delivery. Finally, interviewees

also mentioned that continuous delivery is less frequent in

e-commerce development in comparison to other software

domains, since code changes are extensively tested before

being put into production. This happens to make sure no bug

would be inserted into the system, which could cause a bad

experience for the user and reduce the number of visitors of

the website. P6 stated (supported by P2 and P4):

We had less frequent pushes to production in e-
commerce domain due to extensive code change
tests.

According to the e-commerce survey, 41.6% of participants

disagree with this practice (scores 1 and 2), while 25% are

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

neutral (score3) and 33.3% partially agree (score 4). The high

percentage of disagreement and neutrality may indicate that

this practice is not commonly adopted in the e-commerce

domain and it may only reflect interviewees experience within

their companies. Looking at this results, we believe that less

frequent continuous delivery is strictly related to companies

policies and culture, as it may reflect the personal experience

of interviewees who mentioned that.

C. Healthcare Domain
Frequent regulatory demands. The healthcare domain is

a well-established and largely known software domain within

both academia and industry. This domain has peculiarities that

differ it from the others, such as the regulations that health

systems usually must follow [13, 28]. In fact, interviewees

from the healthcare domain corroborate with this belief. For

instance, they mentioned that when a legal demand arrives,

the developer team needs to focus on implementing this new

demand, giving it the highest priority. P5 stated (supported by

P1, P8 and P13):

Health domain is more regulated and oriented by
legal demands, which come with a preestablished
date.

According to the healthcare survey, 70% of respondents

agree (scores 4 and 5) with this characteristic. More specif-

ically, 60% completely agree with it, indicating that in fact

healthcare software is higly regulated. Scores 1, 2, and 3

received 10% of responses each.

Clearer requirements. Regarding the requirements engi-

neering practices, it is common believed that this phase of

the software development is really difficult and complex [1].

However, participants from the healthcare domain contradicted

this belief, claiming that requirements elicitation in healthcare

domain is not as difficult as in other domains, such as Oil and

Gas (pointed out by P5) and banking (stated by P10). As they

said, despite the common lack of time of health professionals,

the requirements in this domain are clearer due to the (usu-

ally) higher qualification of health professionals (e.g., medical

doctors). Therefore, such professionals can easily understand

and keep a conversation with IT professionals, making the

requirements elicitation relatively easier and clearer, as P5

mentioned (supported by P1 and P13):

Requirements are clearer in healthcare due to the
higher qualification of health professionals (medical
doctors).

According to the healthcare survey, 50% of respondents

disagree (scores 1 and 2) with this characteristic. In addition,

10% are neutral (score 3) and 40% agree (scores 4 and 5). This

agreement distribution indicates that requirements elicitation in

healthcare domain may be strictly dependent on the personal

experience of developers and the health companies for which

they have worked. Therefore, it may reflect a characteristic

of the companies’ policies and culture, instead of an intrinsic

characteristic of the healthcare domain itself. Furthermore, we

believe that age and maturity of companies strongly influence

requirement engineering practices, as older companies may

have acquired experience with requirements elicitation, mak-

ing it easier as indicated by interviewees.

Difficult interoperability. Interviewees from healthcare also

mentioned the difficult they usually face regarding interop-

erability practices of systems from different companies. For

instance, even though there are some standards, hospitals may

have surprisingly different information patterns, which difficult

the communication among them., as P5 mentioned (supported

by P1 and P8):

Although there are standards, hospitals, for example,
rarely switch information because they have different
information formats.

According to the healthcare survey, 70% of respondents

agree (scores 4 and 5) with this practice. In addition, 30%

are neutral (score 3). The responses indicate that in fact

interoperability is a challenge in the healthcare domain.

Data security and privacy concerns. Healthcare participants

often mentioned the importance of reliability, privacy and se-

curity regarding patient data. The whole development process

is concerned with the patient data, always trying to keep them

reliable in order to avoid possible serious consequences. For

instance, participant P5 stated (supported by P1, P13 and P15):

If I switch patient data, I can give wrong diagnoses
and indicate wrong medications.

According to the healthcare survey, 70% of respondents

agree (scores 4 and 5) with this practice, while 30% are

neutral (score 3). The responses suggest that developers in

fact consider data security and data privacy major concerns in

the healthcare software development process.

V. DISCUSSION

In this section, we discuss the results obtained from the

interviews and from the survey. It is important to note that

we answer the research questions based on practices and

characteristics from domains in which there was agreement

between the interviewees and the survey participants. This

gives more confidence to our conclusions as broader and more

diverse set of developers agree with that practice.

We noticed that both banking and e-commerce domains

share a common practice of interrupting the continuous inte-

gration process in periods of the year when the amount of sales

increase, such as Black Friday and new year. Furthermore,

regulatory demands are common in the banking and healthcare

domains, usually requiring efforts from the development team

to implement changes into the system to comply to regulatory

requirements.

Answering RQ1: We found two similarities of prac-

tices across domains. First, continuous integration prac-

tices are adopted in a similar way in the banking and e-

commerce domains, which suggests that other financial-

related domains may also follow this practice. Second,

regulatory-driven changes are common in the banking and

healthcare domains, which must adapt their workflow to

comply to regulatory demands.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

Requirements elicitation in the banking domain is different

from the other domains we investigated, since an understand-

ing of complex financial operations is necessary to precisely

capture requirements needs. The healthcare domain is different

from other domains regarding interoperability. For instance,

many health companies may have different information pat-

terns, which may hinder information switching between com-

panies. Other domains (e.g., mining, banking, and oil and gas)

have widely used standards that ease information switching

whenever necessary.

Answering RQ2: We found two main practices specific

to domain. First, requirements engineering practices are

adopted in an unique way by the banking domain, involv-

ing the comprehension of complex financial operations.

Second, practices related to interoperability are more

difficult in the healthcare domain in comparison to others,

due to different standards used by health companies.

Through the third research question, we are interested in

capturing the main factors that can influence which devel-

opment practices the companies adopt. Based on our inter-

pretations of the interviews, we noticed that the company’s

policy and culture play an important role when deciding about

the software development process. Many times, the software

engineering team is required to follow specific practices due

to the company way of work. For instance, as we already

discussed, we identified that less frequent continuous deliv-

ery practices in e-commerce and requirements engineering

practices in healthcare resulted from companies’ policies and

culture. Furthermore, the age and maturity also have a strong

impact on adopted practices. We realized that companies may

change or adapt practices throughout the years, also as a

result of the emergence of new technologies and development

processes.

Answering RQ3: The companies’ policy and culture

are important factors that guide the development process,

therefore impacting the adopted practices. Moreover, age

and maturity also may influence the practices’ adoption

and their way of use.

A. Implications for Global Software Engineering Practices

In this section, we elaborate on the three main practical

implications our results can have based on the joint analysis

of the interview findings and the survey responses. First, com-

panies should provide targeted training for their employees,

not only software developers, but also training for people from

other positions (e.g., software architect and technology leader).

The training should focus on specific domains’ characteristics

and how development practices are adopted within the com-

pany’s domain(s).

Second, professionals should update themselves regarding

which and how practices are adopted in domains, specially

if they are looking for a new job. For instance, developers

who work (or intend to work) with banking software should

understand (at least basic) financial operations as this my

strongly aid the requirements elicitation.

Third, software engineering education professionals should

consider specificities of different software domains. We believe

new teaching approaches that consider the domain should

be developed. For instance, new specific undergraduate or

graduate courses may be interesting. Interdisciplinary courses

may also be a good idea, as Richardson et al. [13] recently

suggested an interdisciplinary course of software engineering

and healthcare.

B. Contrast with Current Beliefs

Our results give insights about characteristics and ways

global development practices are used in specific software

domains and some results may be surprising for many practi-

tioners or contradict the current common sense. In this section,

we present how our results are surprising or contrast with

current beliefs regarding development practices in software

domains.

Continuous integration may not always be a homogeneous

global software engineering practice in some domains. This

practice has emerged recently aiming at automating the compi-

lation, building and testing of code, with weekly and even daily

integration [29, 30, 31] and some studies have investigated

continuous integration flexibility, costs and benefits [32, 33].

Most developers keep adopting this practice based on how

everyone uses, but the academy has not investigated so far

whether there are differences in continuous integration usage.

Surprisingly, we identified that developers from banking and

e-commerce (i.e., financial domains) usually interrupt contin-

uous integration in critical commerce periods, such as Black

Friday, aiming at avoiding inserting subtle bugs in the systems,

which would be catastrophic for the company. We did not

identify this practice in the other domains we investigated at

all, suggesting it possibly is exclusive from financial domains.

C. Results for Other Domains

In this section, we present other interesting findings from the

interviews in which we did not reach the saturation. Therefore,

these results provide insights regarding some domains and we

emphasize the need for further investigation focusing on these

specific domains.

Releasing practices flexibility in Social Network and Search
Engine domains. Interviewees from social network and

search engine domains often mentioned the flexibility they

usually have regarding many aspects, such as the release

deadlines. We may expect that software development has

extremely strict deadlines of releasing a product, as indicated

by interviewees from banking and e-commerce domains. How-

ever, this seems not to be the rule for social network domain,

as participant P3 said:

...developers prioritize product and technology ex-
cellences. There is less pressure for the deadline
itself.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

Participant P6 reported how developers are assigned to the

projects. We may expect developers are told what they need

to develop and they just do it. However, a common practice

in social network systems is that developers have the freedom

to choose the project and the feature they work on, as P6

mentioned:

I have complete freedom to choose what kind of
project I’m going to work on, what I want to do.

Although domains usually have a dedicated testing team,

such as in banking (stated by P1) and e-commerce (stated

by P7), interviewee P3 pointed out, as a contrast to other

domains, that tests are performed by the developers themselves

in the social network domain. More specifically, the developer

who implemented a feature, for example, is responsible for

testing it. This code-owner based approach has been adopted

only recently in systems with modern architectures, such as

microservices [34, 35]. Therefore, the adoption of this practice

may be a result of architectural decisions in this domain. A

quote from P3:

...there is no test team. The developer is responsible
for creating all integration, web-driven, and unit
tests.

Finally, we concluded that social network and search engine

domains are quite peculiar, presenting unexpected manage-

ment practices (decisions about the projects in which devel-

opers work and deadline policy) and test practices.

Automatic fault-recovery in Oil and Gas domain. The

participant from the oil and gas domain pointed out that this

domain must take into account the need for an automatic fault-

recovery module, which is present during the entire develop-

ment process, from the requirements until the delivery and

operation. In addition, the software system must be extremely

robust, given the environmental conditions of operations (e.g.,

an oil platform in the middle of the ocean). One of the reasons

behind these needs is that the systems remain physically

inaccessible for a long period of time, since professionals

do not have continuously access to the location where the

software is deployed, which is common in other domains (e.g.,

healthcare as pointed out by P13). Remote connections may

also be difficult given the location of the system. A quote from

P5:
Oil and Gas requires more robust and autonomous
solutions since the system is hard to reach for a long
time.

VI. LIMITATIONS AND THREATS TO VALIDITY

The study presented in this paper has some limitations that

could potentially threaten our results, as we explain next. First,

one may point a company from a domain we investigated

and may say the company does not adopt the practices as

we presented. However, our findings are based on interview

participants’ perceptions and their experience, and therefore

our results may not generalize to all companies, as each one

can adopt development practices based on its own culture and

policy. Note that, in this study, we focus on large companies,

such as Facebook, Google, Petrobras, and Macy’s. Therefore,

our results may not hold for small companies possibly with

informal software engineering processes. This kind of lim-

itation is characteristic of qualitative studies, as previously

studied [36, 37]. However, Flyvbjerg [38] demonstrated that

even individual cases (i.e., studies limited to one company)

contributed to discoveries in several fields, such as physics

and social sciences. Therefore, even within a limited context

of a few companies and participants, we believe our results can

impact how companies from the studied software domains can

adopt development practices.

Second, another limitation of our study is related to our

methodology for finding cross-domain developers. We rely on

a semi-automated search for interview participants, manually

validating LinkedIn profiles returned by an algorithm we

implemented. However, we may have misclassified devel-

opers as cross-domain (e.g., assigning a domain in which

the developer has never worked). This may have caused a

reduction in the response rate for the interview since there

would be wrong information regarding the domains in which

the developers we contacted have worked. To mitigate such

issue, we have performed a double check for each participant

before contacting.

Third, one may point that our interview results are based

only on participants personal experience. However, we se-

lected practitioners with a diverse background. This scenario

composed of several large companies and different work

locations bring more generalization to our results since we

believe that biases (e.g., from a specific sort of company or a

specific location) are attenuated. In addition, the Web survey

collected responses from developers worldwide wit different

backgrounds, which supports our interview results regarding

adopted practices within domains.

Finally, during the interviews, we asked questions about

specific development practices. One may argue that this is a

limiting factor and does not allow the interviewee to provide

information about a wider range of topics. However, in the last

section of the interview, the participant could talk about any

desired topic, including information not previously given.

VII. CONCLUSION AND NEXT STEPS

In this paper, we report the results of an exploratory

qualitative study in which we conducted 19 semi-structured

interviews with worldwide cross-domain developers who have

worked in several multinational companies from different

domains around the world. We also run a Web survey to

check whether development practices revealed by interviews

are widely adopted.

Our findings suggest that different domains in fact adopt

development practices in different manners. For instance,

financial domains interrupt the continuous integration process

in commerce critical periods (e.g., Black Friday), when the

amounts of sales sharply increase. The company’s culture and

policies also impact decisions about development practices,

as previously suggested by Bogart et al. [39]. We emphasize

the need for further investigation regarding practices and

domains’ characteristics in which there was disagreement

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

between interviewees and survey participants, such as the

less frequent continuous delivery in e-commerce systems and

clearer requirements practices in healthcare. It is important to

note that we do not claim our results should be universally

adopted by companies within the domains we investigated.

Instead, a careful analysis is recommended for each case. Here

we are providing insights that might possibly be adopted, given

their successful use in global software engineering industry

so far. As future work, we intend to conduct a series of

studies focusing on domains in which we did not reach the

saturation, but interesting information was collected, such as

for social networks and oil and gas domains. In addition,

highly specialized domains that potentially have interesting

practices need focused studies as well, such as aviation.

VIII. ACKNOWLEDGMENTS

This research was partially supported by Brazilian funding

agencies: CNPq (Grant 290136/2015-6 and 424340/2016-0),

CAPES, and FAPEMIG (Grant PPM-00651-17).

REFERENCES

[1] B. Yost, M. Coblenz, B. Myers, J. Sunshine, J. Aldrich,

S. Weber, M. Patron, M. Heeren, S. Krueger, and

M. Pfaff, “Software development practices, barriers in

the field and the relationship to software quality,” in 10th
Int’l Symposium on Empirical Software Engineering and
Measurement, 2016.

[2] H. K. Wright and D. E. Perry, “Release engineering prac-

tices and pitfalls,” in 34th Int’l Conference on Software
Engineering, 2012.

[3] P. Thongtanunam, S. McIntosh, A. E. Hassan, and

H. Iida, “Investigating code review practices in defective

files: An empirical study of the qt system,” in 12th
Working Conference on Mining Software Repositories,

2015.

[4] M. Stavnycha, H. Yin, and T. Römer, “A large-scale

survey on the effects of selected development practices

on software correctness,” in 2015 Int’l Conference on
Software and System Process, 2015, pp. 117–121.

[5] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[6] J. Highsmith and A. Cockburn, “Agile software devel-

opment: The business of innovation,” Computer, vol. 34,

no. 9, pp. 120–127, 2001.

[7] P. M. Duvall, S. Matyas, and A. Glover, Continuous
integration: improving software quality and reducing
risk. Pearson Education, 2007.

[8] B. Fitzgerald and K.-J. Stol, “Continuous software en-

gineering: A roadmap and agenda,” Journal of Systems
and Software, vol. 123, pp. 176–189, 2017.

[9] L. Chen, “Continuous delivery: Huge benefits, but chal-

lenges too,” IEEE Software, vol. 32, no. 2, pp. 50–54,

2015.

[10] S. Gregory, “How common is common enough in

requirements-engineering practice?” IEEE Software,

vol. 35, no. 3, pp. 20–23, 2018.

[11] E. Murphy-Hill, T. Zimmermann, and N. Nagappan,

“Cowboys, ankle sprains, and keepers of quality: How

is video game development different from software de-

velopment?” in 36th Int’l Conference on Software Engi-
neering, 2014.

[12] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo,

E. Cirilo, P. Jamshidi, and C. Kastner, “Evaluating

domain-specific metric thresholds: an empirical study,”

in Int’l Conference on Technical Debt, 2018.

[13] I. Richardson, L. Reid, and P. OLeary, “Healthcare sys-

tems quality: development and use,” in Int’l Workshop
on Software Engineering in Healthcare Systems, 2016.

[14] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory

in software engineering research: A critical review and

guidelines,” in 38th Int’l Conference on Software Engi-
neering, 2016.

[15] A. Strauss and J. M. Corbin, Basics of qualitative
research: Grounded theory procedures and techniques.
Sage Publications, Inc, 1990.

[16] B. G. Glaser and A. L. Strauss, Discovery of grounded
theory: Strategies for qualitative research. Routledge,

2017.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-

nell, and A. Wesslén, Experimentation in software engi-
neering. Springer Science & Business Media, 2012.

[18] P. Stacey and J. Nandhakumar, “A temporal perspective

of the computer game development process,” Information
Systems Journal, vol. 19, no. 5, pp. 479–497, 2009.

[19] T. Burger-Helmchen and P. Cohendet, “User communi-

ties and social software in the video game industry,” Long
Range Planning, vol. 44, no. 5-6, pp. 317–343, 2011.

[20] B. Dagenais and M. P. Robillard, “Creating and evolving

developer documentation: understanding the decisions of

open source contributors,” in 18th Int’l Symposium on
Foundations of Software Engineering, 2010.

[21] S. Segura, A. B. Sánchez, and A. Ruiz-Cortés, “Auto-

mated variability analysis and testing of an e-commerce

site.: an experience report,” in 29th Int’l Conference on
Automated software engineering, 2014.

[22] D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi,

“Software quality concerns in the italian bank sector: the

emergence of a meta-quality dimension,” in 39th Int’l
Conference on Software Engineering: Software Engineer-
ing in Practice Track, 2017.

[23] G. Fairbanks, K. Bierhoff, and D. D’Souza, “Software ar-

chitecture at a large financial firm,” in 21st symposium on
Object-oriented programming systems, languages, and
applications, 2006.

[24] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané,

D. Poshyvanyk, and Y.-G. Guéhéneuc, “Domain matters:

bringing further evidence of the relationships among

anti-patterns, application domains, and quality-related

metrics in java mobile apps,” in 22nd Int’l Conference
on Program Comprehension, 2014.

[25] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W.

Jones, D. C. Hoaglin, K. El Emam, and J. Rosen-

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

berg, “Preliminary guidelines for empirical research in

software engineering,” IEEE Transactions on software
engineering, vol. 28, no. 8, pp. 721–734, 2002.

[26] K. Charmaz and L. L. Belgrave, “Grounded theory,” The
Blackwell encyclopedia of sociology, 2007.

[27] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and

M. Harman, “Are developers aware of the architectural

impact of their changes?” in 32nd Int’l Conference on
Automated Software Engineering, 2017.

[28] K. Roed and G. Ellingsen, “Users as heterogeneous

engineers-the challenge of designing sustainable infor-

mation systems in health care,” in 44th Hawaii Int’l
Conference on System Sciences, 2011.

[29] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,

“Quality and productivity outcomes relating to contin-

uous integration in github,” in 10th Joint Meeting on
Foundations of Software Engineering, 2015.

[30] D. Ståhl and J. Bosch, “Modeling continuous integration

practice differences in industry software development,”

Journal of Systems and Software, vol. 87, pp. 48–59,

2014.

[31] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for

improving regression testing in continuous integration

development environments,” in 22nd Int’l Symposium on
Foundations of Software Engineering, 2014.

[32] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and

D. Dig, “Trade-offs in continuous integration: assurance,

security, and flexibility,” in 11th Joint Meeting on Foun-
dations of Software Engineering, 2017.

[33] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig,

“Usage, costs, and benefits of continuous integration

in open-source projects,” in 31st Int’l Conference on
Automated Software Engineering, 2016.

[34] P. Jamshidi, C. Pahl, N. C. Mendona, J. Lewis, and

S. Tilkov, “Microservices: The journey so far and chal-

lenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35,

May 2018.

[35] L. Prechelt, H. Schmeisky, and F. Zieris, “Quality ex-

perience: a grounded theory of successful agile projects

without dedicated testers,” in 38th Int’l Conference on
Software Engineering, 2016.

[36] A. Begel and T. Zimmermann, “Analyze this! 145 ques-

tions for data scientists in software engineering,” in 36th
Int’l Conference on Software Engineering, 2014.

[37] D. Lo, N. Nagappan, and T. Zimmermann, “How prac-

titioners perceive the relevance of software engineering

research,” in 10th Joint Meeting on Foundations of Soft-
ware Engineering, 2015, pp. 415–425.

[38] B. Flyvbjerg, “Five misunderstandings about case-study

research,” Qualitative inquiry, vol. 12, 2006.

[39] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How

to break an api: Cost negotiation and community values

in three software ecosystems,” in 24th Int’l Symposium
on Foundations of Software Engineering, 2016.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 27,2020 at 02:24:14 UTC from IEEE Xplore. Restrictions apply.

