
Using Natural Language Processing Techniques to Improve
Manual Test Case Descriptions

Markos Viggiato, Dale Paas, Chris Buzon, Cor-Paul Bezemer∗

ABSTRACT
Despite the recent advancements in test automation, software test-
ing often remains a manual, and costly, activity in many industries.
Manual test cases, often described only in natural language, con-
sist of one or more test steps, which are instructions that must be
performed to achieve the testing objective. Having different em-
ployees specifying test cases might result in redundant, unclear, or
incomplete test cases. Manually reviewing and validating newly-
specified test cases is time-consuming and becomes impractical in a
scenario with a large test suite. Therefore, in this paper, we propose
an automated framework to automatically analyze test cases that
are specified in natural language and provide actionable recommen-
dations on how to improve the test cases. Our framework consists
of configurable components and modules for analysis, which are
capable of recommending improvements to the following: (1) the
terminology of a new test case through language modeling, (2) po-
tentially missing test steps for a new test case through frequent
itemset and association rule mining, and (3) recommendation of
similar test cases that already exist in the test suite through text em-
bedding and clustering. We thoroughly evaluated the three modules
on data from our industry partner. Our framework can provide ac-
tionable recommendations, which is an important challenge given
the widespread occurrence of test cases that are described only in
natural language in the software industry (in particular, the game
industry).

CCS CONCEPTS
•Computingmethodologies→Natural language processing;
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Game testing, Natural language processing, Language modeling,
Association rules, Clustering

1 INTRODUCTION
Software testing is a fundamental and widely-performed, yet costly,
activity for quality assurance of a software system [12, 13, 16]. De-
spite the recent advancements in test automation, software testing
often remains a manual activity in industry, such as in the gaming
industry where developers face challenges to automate tests [30, 32].
In a manual testing scenario, the testing and test case design activi-
ties require even more effort and time from the development team
and the Quality Assurance (QA) engineers (testers), which makes
testing even more costly for the company.

∗Markos Viggiato and Cor-Paul Bezemer are with the Analytics of Software, Games and
Repository Data (ASGAARD) lab at the University of Alberta, Canada. E-mail:{viggiato,
bezemer}@ualberta.ca
Dale Paas and Chris Buzon are with Prodigy Education, Toronto, Canada. E-mail:
{dale.paas, christopher.buzon}@prodigygame.com.

Manual test cases are often described in natural language and
consist of a sequence of one or more steps, which are instructions
that need to be executed by the tester to achieve the test case
objective (e.g., to test a new feature of the system). Those test cases
are often defined by employees from different departments, such
as QA engineers or developers, which may result in redundant (i.e.,
test cases with the same testing objective), unclear/ambiguous, or
even incomplete (e.g., when necessary steps are missing from a
test case description) test cases as the system evolves and the test
suite grows [34]. Problematic test case descriptions can hinder the
manual testing activity efficiency and effectiveness, and can also
affect the performance of techniques such as Natural Language
Processing (NLP) techniques and text clustering [22].

Having several employees manually review new test cases (e.g.,
to check if they are clear, unambiguous and complete) and identify
redundant test cases is time-consuming and becomes impractical in
a scenario with a large test suite in which test cases are constantly
added to it. Also, prior work has indicated the need for automated
approaches that can be integrated into the testing process of video
games [32]. Therefore, an automated approach to analyze the test
cases specified in natural language and provide actionable insights
to improve their descriptions is needed to support QA and develop-
ers and help make testing more efficient and effective.

In this paper, we propose an automated framework for providing
feedback on how to improve a new test case that is specified in
natural language. In particular, we discuss three modules for analy-
sis that we implemented so far for our framework. These analysis
modules provide the following recommendations:

• Recommendations to improve the terminology of a new
test case description based on existing test case descriptions
through language modeling.

• Recommendations of potentially missing test steps for a
new test case through frequent itemset and association rule
mining.

• Recommendations of similar test cases that already exist
in the test suite through a similarity detection technique that
we proposed in a prior work [22, 35]

All three analysis modules were thoroughly evaluated and opti-
mized for the data from our industry partner (Prodigy Education),1
and we provide access to the source code of the experiments that
we performed.2 The framework’s analysis modules are unsuper-
vised (i.e., they do not require manually labelled data or human
intervention). In this work we use the term “existing test cases” to
refer to all test cases that are already part of the test suite and “new
test case” to refer to a newly-specified test case that is not yet part
of the test suite. Our framework should be used right after a new
test case is specified to analyze it and provide feedback to improve

1https://www.prodigygame.com/main-en/
2https://github.com/asgaardlab/21-markos-test_case_improvement_framework-
code

https://www.prodigygame.com/main-en/
https://github.com/asgaardlab/21-markos-test_case_improvement_framework-code
https://github.com/asgaardlab/21-markos-test_case_improvement_framework-code

ICSE-SEIP 2022, May 21-29, Pittsburgh, USA Viggiato et al.

Data preparation

Existing
test

cases

New
test
case

Module: terminology improvement analysis

Module: missing test step analysis

Module: test case similarity analysis

Train a model
to analyze
test case

terminology Saved model

Recommend
test case

terminology
improvements

Train a model to
detect test

steps missing
from test case Saved model

Recommend
missing test

steps for
test case

Saved model

Recommend
similar test

cases

Read and
pre-process data

Report generation

Aggregate
outputs from the
analysis modules

Present aggregate
outputs in a single

document

Analysis

Train a model
to detect test
case similarity

Figure 1: Our automated framework for analysis and feed-
back of test cases in natural language.

the test case description. Then, the improved test case can be added
to the test suite and manually executed.

The goal of our framework is to help QA engineers and devel-
opers to reduce the time and effort needed for manual testing by
improving the overall quality of test cases that are described in
natural language. The framework also supports the creation and
maintenance of a high-quality, more consistent and more standard-
ized test suite. In particular, our framework can be useful and benefit
new employees who do not yet have much knowledge about the
existing test suite. Furthermore, a more consistent test suite can
reduce the challenges when automating tests in the future [22] as
the overall quality and consistency of the test suite will be higher.

The remainder of the paper is structured as follows. In Section 2,
we explain our framework. In Sections 3, 4, and 5, we detail the
approaches that were used to implement the framework’s analysis
modules, with the performed experiments and the results. We then
present related work and threats to validity in Sections 6 and 7.
Finally, we conclude the paper in Section 8.

2 OUR AUTOMATED FRAMEWORK FOR
ANALYSIS AND FEEDBACK

Our automated framework provides feedback to improve the de-
scription of the test cases designed to test the Prodigy Math game,
which is a proprietary, online, web-based educational math game
with more than 100 million users around the world. The game has
a curriculum-aligned educational content and features over 50,000
math questions spanning Grade 1-8. It is an RPG-style game, which
means that players play the role of a character (a wizard) in the
Prodigy world and can go to the several different world zones avail-
able in the game. As the players answer math questions, their wiz-
ards can evolve, learn new spells, and acquire new equipment and
in-game items. While the game is available to every student, there is
an optional membership subscription, that allows members to have
an increased level of character customization, level up faster, among
other benefits not available to non-members. The membership is
not required to access the in-game curriculum-aligned content.

Our framework consists of three main components, which cor-
respond to the steps that are performed: data preparation, analysis,
and report generation. The framework’s analysis component con-
sists of individual configurable modules. Each module implements

an approach that provides a different capability regarding auto-
mated analysis and feedback for test cases that are described in
natural language. New modules with new capabilities can be eas-
ily added to the framework. Figure 1 presents an overview of our
automated framework, which currently consists of the following
components and modules:

• Data preparation component
• Analysis component, which currently contains modules for
the following: (1) terminology improvement, and analyzing
(2) missing test steps and (3) similar test cases.

• Report generation component
The three implemented modules within the analysis component

were driven based on our experience at Prodigy and reports from
experienced QA engineers and developers that indicated the need
to support these types of test case improvements. Furthermore,
prior work highlighted the need for more consistent and standard
test case descriptions in a manual testing scenario and automated
approaches to better support the testing process of games [22, 32].

Our framework first reads and pre-processes the data from ex-
isting and new test cases (data preparation component). Then, the
pre-processed data is fed into one or more modules (analysis com-
ponent) and the framework generates a report with the modules’
outputs (report generation component). Each analysis module takes
the data through a training and an inference phase. In the training
phase, users can train new models using the pre-processed existing
test cases. In the inference phase, users can use the trained models
to analyze a new test case. The modules are independent from each
other and can be enabled or disabled depending on the desired
analysis that the users wish to perform. Next, we demonstrate each
framework’s component using the test case examples in Table 1.

2.1 Data preparation component
This component loads and pre-processes the data. The input to
our approach consists of unprocessed test cases that are written in
natural language: there is no source code available for these test
cases. Each test case contains one or more test steps, which each
give an instruction that must be manually performed by a human
tester. Table 1 presents examples of two test cases TC1 and TC2
from the Prodigy game. TC1 is already in the test suite and TC2 is
about to be added to it (and hence is not used to train the models
in the analysis modules). Each test case has a name, an objective,
and one or more test steps.

We applied several pre-processing steps to each test case’s name,
objective and test step(s). We used tokenization to transform the
sentences into lists of words. We then removed stop words (e.g.,
“of” and “the”) as they do not add meaning to the text. Finally, we
converted all words to their root form (lemmatization), such as
“playing” to “play”, to have more consistent terminology. The data
preparation component can be adapted if users wish to apply other
pre-processing steps for an analysis module.

2.2 Analysis component
2.2.1 Module: terminology improvement analysis. This module uses
the pre-processed test cases to train models to analyze the termi-
nology of test cases. The models are then used to recommend im-
provements by identifying words in the description that could be

Using Natural Language Processing Techniques to Improve Manual Test Case Descriptions ICSE-SEIP 2022, May 21-29, Pittsburgh, USA

Table 1: Examples of test case descriptions from the Prodigy game.

Test case name Test case objective Test step identifier Test step

Membership purchase
(TC1)

Verify the membership
flow through the HUD
(Heads Up Display)

TS1 Log into the game with a non-member account
TS2 Go to the membership page
TS3 Click on the member icon in the HUD
TS4 Click on “Continue to buy a membership”
TS5 Go through the membership flow and become a member
TS6 Verify that the user is a member

Membership flow
(TC2)

User successfully
purchases membership

TS7 Log into the game with a child account
TS8 Go through the membership flow and become a member
TS9 Verify that the user is a member

replaced by more likely alternatives, based on their usage in exist-
ing test cases. For our example test case (TC2) in Table 1, the top-3
recommendations of this module are to change the word child to
member, non-member, or student in test step TS7:

“Log into the game with a child account”

“... member account”

“... non-member account”

“... student account”

Using the original word child makes the test step unclear (as we
are not sure which type of child account should be used as there are
different ones) and would require further clarification with other
QA engineers or developers. For example, replacing child with non-
member, would be more appropriate as the tester would be aware
that an account of the non-member type must be used to verify if a
non-member can purchase the membership.

2.2.2 Module: missing test step analysis. This module analyzes how
test steps of the existing test cases appear together to assess a new
test case’s completeness. The module builds a model that recom-
mends potentially missing test steps for the new test case based on
test steps that frequently appear together across the existing test
cases. For test case TC2, this module recommends to add the test
step TS2 (“Go to the membership page”):

𝑇𝐶2revised =

Log into the game with a child account

Go to the membership page

Go through the membership flow and become a member
Verify that the user is a member

TS2 (“Go to the membership page”) appears in the test case TC1
but is missing from the new test case. Adding TS2 to TC2 can help
the tester to execute the test more efficiently as a clearer direction
is given (instructing the tester to go to the membership page).

2.2.3 Module: test case similarity analysis. This module trains a
model with the pre-processed descriptions of existing test cases to
identify and retrieve test cases that have a testing objective or test
steps which are similar to the ones of a new test case. For test case
TC2, this module retrieves TC1 as a similar test case. TC1 has a
similar testing objective as TC2 (which is to go through the member-
ship flow and assure that a user can purchase the membership) and
similar, but more detailed test steps, which can be help to improve

the new test case. Identifying similar test cases that are already in
the test suite also helps avoid adding redundant test cases.

2.3 Report generation component
The purpose of this component is to aggregate the outputs of each
used analysis module and present the results in a single report to
QA engineers and developers.

2.4 Using the framework in practice
All the functionalities of our framework are provided through a web
API, which can be used, for instance, to build other applications that
rely on our framework. We are currently working to integrate our
framework with Prodigy’s data warehouse and cloud infrastructure
through a web application that can be easily used by Prodigy’s QA
engineers and developers. The application allows users to perform
the automated analysis and visualize the generated report with the
results in a usable way. Users can also choose which module they
want to execute and provide additional configurations to the tech-
niques used for the analysis (e.g., if our recommendations of similar
test cases are too broad, users can increase the similarity threshold
and less recommendations will be provided). Furthermore, the web
application allows users to automatically apply the recommended
changes to the new test case, making the use of our framework
more efficient. We discuss the experiments to train and evaluate
the models for each module in Sections 3, 4, and 5.

2.5 A description of our dataset
To build the models and perform the experiments for each module
that we previously discussed, we collected all the 3,323 test case
descriptions written in natural language from the Prodigy test suite.
The test cases under study were manually designed to test the
Prodigy Math game. In total, the test cases in our data set contain
15,644 steps, with an average of 4.82 test steps per test case and a
vocabulary size of 2,701 unique words across all the test cases.

3 THE TERMINOLOGY IMPROVEMENT
ANALYSIS MODULE

Our approach for recommending terminology improvements con-
sists of using statistical and neural language models to analyze the
description of a test case and identify words that should be replaced
by more likely words. We train unidirectional and bidirectional

ICSE-SEIP 2022, May 21-29, Pittsburgh, USA Viggiato et al.

n-grams, BERT-based models, and a combination of both types.
We then use the characteristics of the sentences in the test case
description to choose the most suitable model to identify words in
the description that can be replaced by more likely words. Figure 2
presents an overview of our approach to recommend terminology
improvements to test cases, which consists of a training phase,
evaluation of the models, and inference phase as we explain below.

3.1 Training phase
The test case descriptions in our dataset have sentences with very
different lengths, ranging from 3 words to more than 30 words. Fur-
thermore, even though many test cases have a similar terminology,
as new features are included in the game, new test cases with a
terminology that is different from the existing ones are added to
the test suite. Based on the characteristics of our data, we chose
two different types of language models to be evaluated: statistical
models (n-grams) and neural models (BERT-based models).

Statistical models such as the n-gram capture regularities in
the corpus used to build the model and perform well with highly
predictable corpora that have repetitive patterns [18], which often
appear in our data. N-gram is a popular generative statistical lan-
guage model that estimates the probabilities based on the frequency
with which words appears in the training corpus (a.k.a. the maxi-
mum likelihood estimate) [7, 18, 19]. For any sequence s of words:
𝑤1𝑤2𝑤3𝑤4 · · ·𝑤𝑛 , a common way of estimating the probability of
a word is to use a fixed-size window of (n-1) context words. For
example, using a bigram, the probability of 𝑤𝑖 depends only on
𝑤𝑖−1 and uses the number of times𝑤𝑖−1𝑤𝑖 appeared in the training
corpus relative to the number of times that𝑤𝑖−1 appeared:

𝑝 (𝑤𝑖 |𝑤1 · · ·𝑤𝑖−1) = 𝑝 (𝑤𝑖 |𝑤𝑖−1) = 𝑐𝑜𝑢𝑛𝑡 (𝑤𝑖−1𝑤𝑖)
𝑐𝑜𝑢𝑛𝑡 (𝑤𝑖−1)

N-gram models have been traditionally used for the next word
prediction task, in which only the leftward context words are used
to predict the next word (unidirectional n-gram) [19, 23]. However,
in our work, we also experiment with n-gram models to perform
the fill-in-the-blank task as both leftward and rightward context
words are available (bidirectional n-gram) [9].

Neural models present several benefits over n-grams. For exam-
ple, neural models can handle longer dependencies in a sentence,
which can be an advantage for the longer sentences in our data.
Also, neural models generalize better than statistical models [4, 28],
which can be advantageous for cases with an unseen context (e.g.,
when a new test case with new terminology is added to the test
suite). In particular, transformer-based neural language models
have shown a higher performance than other types of neural mod-
els (e.g., RNN/LSTM) [21] and have achieved the state-of-the-art
performance in many NLP tasks [23, 31]. In our work, we use
transformer-based neural language models because they outper-
form other neural architectures and there are several large pre-
trained models available [39].

3.1.1 Training n-gram language models. We trained unidirectional
and bidirectional unigram, bigram, trigram, 4-gram, and 5-gram
models. For n-grams with an order above 1 (bigram, trigram, and
so on), a word might appear in a context in the test set that has
not appeared in the training set. To avoid having a zero probability
prediction and to have a usable prediction, we adopt a simple and

effective smoothing technique called stupid backoff [6, 18, 19]. In
this case, if the model has not seen a certain 5-gram, for exam-
ple, it can back off from the 5-gram and use the probabilities of
the 4-gram, and so on. To handle the cases in which an unknown
(out-of-vocabulary) word appears in the test set, we introduce a
new token <unk> in our vocabulary, which replaces rare words (a
random sample of words that occur only once in our corpus). We
then estimate the probabilities for the <unk> token from its counts
just like another regular word [8, 19]. Also, an n-gram model au-
tomatically backs off to a lower-order if the length of the context
word sequence is smaller than n. For example, when using a unidi-
rectional 4-gram and analyzing the third word of a sentence, there
are only two words on the left, so the model uses a trigram (two
context words plus the target word). Finally, for the bidirectional
n-gram, we estimate the probability of a word𝑤𝑖 by averaging the
probability using the leftward words and the probability using the
rightward words, as shown below for a bigram:

𝑝 (𝑤𝑖 |𝑤𝑖−1𝑤𝑖+1) =
𝑝left (𝑤𝑖 |𝑤𝑖−1) + 𝑝right (𝑤𝑖 |𝑤𝑖+1)

2

3.1.2 Training BERT-based language models. To train our BERT-
based language model, we used the BertForMaskedLM class from
Huggingface [39] with a pre-trained model. To tokenize the data
and format it as required by BERT, we used BERT’s own tokenizer
provided by Huggingface. Finally, similarly to what was originally
performed to train BERT from scratch [10], we fine-tuned the pre-
trained BERT-based models with the masked language modeling
objective by randomly masking 15% of the words in the training
data. We evaluated three pre-trained models: BERT base uncased
(trained on lower-cased English text), DistilBERT base uncased (a
light transformer model based on BERT base uncased), and BERT
large uncased whole word masking (which was trained using whole
word masking). For each of the three pre-trained models, we also
evaluated their fine-tuned versions. For simplicity, we will use
these names to refer to the used BERT models: BERT for BERT base
uncased, DistilBERT for DistilBERT base uncased, and BERT whole
word for BERT large uncased whole word masking.

3.2 Evaluation
3.2.1 Evaluation setup. To train and evaluate the language models,
we used all the data that we collected (test case name, objective
and steps). We shuffled the data and split it into training (80%)
and testing (20%) sets. For this approach, a preliminary analysis
showed that keeping the stop words and words in their original
format (i.e., not performing lemmatization) increases the language
models’ performance as more context information is available. We
used the intrinsic evaluation metric called perplexity [8, 18, 19].
A good language model can capture the patterns and regularities
of the training corpus and should be able to predict the words in
a new sequence W that comes from the same population as the
training one with a high probability. That is, the model should not
be “perplexed” by that new sequence. Perplexity (PP) can be defined
as follows:

PP(𝑊) = 𝑁

√√√
𝑁∏
𝑖=1

1
𝑃 (𝑤𝑖 | 𝑤1 . . . 𝑤𝑖−1)

(1)

Using Natural Language Processing Techniques to Improve Manual Test Case Descriptions ICSE-SEIP 2022, May 21-29, Pittsburgh, USA

Pre-
processed

existing
test cases

Pre-
processed

new test case

Build n-grams
with training set

Best
n-grams

Training phase

Pre-trained BERT LMs
Fine-tune BERT LMs

with training set

Compute conditional
probabilities

P(w2|w1) =
P(w1 w2)

P(w1)

w1 w2 w3 w4

w1 w2 w3 w4

w1 w2 w3 w4

Inference phase

Original
word in
top-k?

No recommendations
YES

NO

Recommend word replacement

ŵ2

ŵ1

ŵ3

w2 w3 w4

LM top-k predicted words for
masked words

[mask] w2 w3 w4

w1 [mask] w3 w4

w1 w2 [mask] w4

w1 w2 w3 [mask]

Mask words in a new test step

w1 w2 w3 w4

ŵ1 w2 w3 w4

Split existing
test cases

into training
and testing

Compute
perplexity on

testing set

New model weights

Select most appropriate LM

Condition
n-gram +

BERT

BERT

Compute
perplexity on

testing set

Evaluation

Best BERT-
based LMs

n-gram
+

BERT

n-gram

[CLS] w1 w3 w4

Transformer layer

Transformer layer

[CLS] ŵ1 ŵ2 ŵ3 ŵ4

MLM classifier

[MASK]

Figure 2: Our approach for recommending terminology improvements with n-grams and BERT-based language models (LMs).

WhereW is a sequence of words and P is the conditional probabil-
ity of𝑤𝑖 given the context words. Since a good model should assign
a high probability to a new sequence of words and the perplexity is
inversely related to the probability, the better the model, the higher
the probabilities, and the lower the perplexity, which leads to a
better generalization of the model [5]. We compare the distribu-
tions of perplexity for the different models with the non-parametric
Wilcoxon rank-sum test [38] and compute the magnitude of the
distribution difference with Cliff’s delta effect size [24, 33].

3.2.2 Evaluation results. Figure 3 presents the distributions of the
perplexity metric for all the evaluated models across the testing set
(each data point corresponds to the perplexity of a sentence in the
testing set). Figure 3a shows that for unidirectional n-grams, the
unigram is the worst n-gram as it presents the highest perplexity
median (94.95) and the higher the order of the n-gram, the lower
the median perplexity (i.e., the better the model), with the trigram,
4-gram, and 5-gram presenting very similar median perplexities
(12.41, 12.79, and 12.68, respectively). The bidirectional n-grams
present a similar behavior across different n-gram orders, but with
even lower perplexities. When comparing the unidirectional and
bidirectional distributions for each n-gram order, the Wilcoxon
rank-sum test shows that for all of them, except the unigram, the
distributions are significantly different, with a medium Cliff’s delta
effect size. This shows that the bidirectional n-grams indeed achieve
better performance. When we compare the distributions among
the bidirectional n-gram models only, the bigram distribution is
significantly different from higher-order n-grams, but with a small
Cliff’s delta effect size. However, there is no statistically significant
difference between the distributions of the trigram, 4-gram, and 5-
gram models (all with a negligible effect size). In practice, a trigram
seems enough in our case, but given the low n-gram computational
cost, we use the best-performing model (bidirectional 5-gram) in
our approach for test case terminology improvement.

1

10

100

Unigram
Bigram

Tri
gram

4−gram

5−gram

N−grams

P
er

pl
ex

ity

Unidirectional Bidirectional

(a) Perplexity of n-gram models.

10
1000

100000
10000000

BERT
DistilBERT

BERT whole word

BERT−based models

P
er

pl
ex

ity

Pre−trained Fine−tuned

(b) Perplexity of BERT models.

Figure 3: Distributions of the perplexity*metric of the evalu-
ated language models. *Log-transformed perplexity for bet-
ter visualization.

Figure 3b presents the perplexity distribution for the BERT-based
models. For the pre-trained models, DistilBERT presents the highest
median perplexity (32k), followed by BERT (520.64) and BERT whole
word which has the lowest median perplexity (76.16). Fine-tuned
models present a similar behavior, but with lower perplexities,
with BERT whole word also having the lowest median perplexity
(45.97). Except for DistilBERT, fine-tuning improves the model’s
performance by reducing the perplexity of the model as it sees
new sequences. When comparing the distributions between the
pre-trained and fine-tuned models, the Wilcoxon rank-sum test
shows that for all the three types of models there is a statistically
significant difference between the distributions, with a large effect
size for DistilBERT, a small effect size for BERT, and a negligible
effect size for BERT whole word.

3.2.3 Comparing N-gram and BERT-based language models. Since
we cannot use perplexity to compare models built with different
vocabularies [8, 19], we used a recommendation system-like metric
(accuracy@k) to compare the best-performing n-gram (bidirectional
5-gram) to the best-performing BERT-basedmodel (fine-tuned BERT

ICSE-SEIP 2022, May 21-29, Pittsburgh, USA Viggiato et al.

Table 2: Median accuracy@k (acc@k) for combinations of different types of language models. *BERT whole word refers to the
BERT large uncased whole word masking model.

Language model Entire testing set Short test step sentence Long test step sentence
acc@3 acc@5 acc@10 acc@3 acc@5 acc@10 acc@3 acc@5 acc@10

Bidirectional 5-gram 0.67 0.71 0.75 0.34 0.5 0.5 0.81 0.84 0.86
Fine-tuned BERT whole word* 0.17 0.22 0.25 0 0 0.17 0.21 0.27 0.30

N-gramunseen-context + BERT 0.67 0.70 0.75 0.34 0.5 0.5 0.84 0.85 0.88

whole word). We compared their performance for our task (word
recommendation). To compute the accuracy@k, we first translate
the problem of word recommendation to a binary problem. Sup-
pose we are analyzing a test step composed of a sequence of words
𝑤1𝑤2 · · ·𝑤𝑛 . We mask one word at a time (i.e., replace the word
by the [mask] token, as shown in Figure 2) and get the top-k most
likely words predicted by the language model for each masked
word. For the top-k words predicted by a model for a single masked
word, if the original word is among the k predictions, we con-
sider it a correct recommendation (1), otherwise, we consider it a
wrong recommendation (0). Then, we have a correct (1) or wrong
(0) recommendation for each masked word in a test step sentence,
and compute the accuracy@k for the whole test step sentence as:
count(correct suggestions)
count(all suggestions) . We evaluated the bidirectional 5-gram and

the fine-tuned BERT whole word models on the entire testing set
using top-3, top-5, and top-10 suggestions. Table 2 shows the me-
dian accuracy@k for both models across the entire testing set in the
Entire testing set column (we computed the accuracy@k for each
test step in the testing set and calculated the median), for which
the bidirectional 5-gram performed better than BERT whole word
for 𝑘 ∈ {3, 5, 10}.

To further understand the scenarios in which the bidirectional
5-gram and fine-tuned BERT whole word models fail, we manually
inspected a sample of test steps for which either the n-gram has an
accuracy@10 of zero and BERT has an accuracy@10 of one, or vice-
versa. We focused on the cases where one model is totally unable to
provide a correct recommendation (even recommending the top-10)
while the other provides all the recommendations correctly to be
able to identify the characteristics that might cause one model to
fail but not the other. This allows us to better understand in which
scenarios we can combine both models. We made two observations:
(1) the n-gram model performs very well when context words were
seen during training but the performance degrades when the model
needs to back off until reaching the unigram (because of unseen
context) and the n-gram’s prediction probability is low (even for
the first-ranked predicted word) and (2) BERT struggles to make
correct predictions when the test step has very domain-specific
terms and is short (in terms of number of words).

Using those two observations with the fact that BERT usually
outperforms other language models for long sentences, we also
evaluated a combination of the bidirectional 5-gram with BERT
whole word for different lengths of test steps. Using the distribution
of number of words per test step in our data, we split the testing
set into two groups: short test step sentences (less than 5 words,
which correspond to the bottom 20% of the testing set) and long

test step sentences (more than 12 words, which corresponds to
the top 20% of the testing set). To combine the bidirectional 5-
gram with BERT whole word, we adopt the following procedure: for
each masked word in a test step sentence, we verify if the n-gram
backed-off until the unigram to make the prediction (i.e., if the n-
gram found an unseen context) and if the n-gram probability for the
first-ranked word is lower than 0.5 (empirically defined). If those
conditions occur, we assume that the BERT predictions are more
reliable (since in an unseen context, more generalizable models, e.g.
BERT, perform better) and use them. Otherwise, we keep the n-gram
predictions. Our goal is to evaluate if switching to the predictions
made by BERT whole word boosts the overall performance of word
recommendation for different test step sentence lengths.

Table 2 shows the performance of the combined models (N-
gramunseen-context + BERT) and how it compares to each individual
model’s performance for all the sentence length scenarios. Using
both the entire testing set or only short sentences, the performance
of the bidirectional 5-gram is superior than BERT whole word’s per-
formance for the top-3, top-5, and top-10 predictions. That is, using
the combined N-gramunseen-context + BERT does not increase the
performance. However, for longer test step sentences, the combined
the models increases the performance compared to each model’s
individual performances. For the top-3 predictions, the accuracy@3
increased from 0.81 to 0.84 (almost 4%), while the accuracy@5 in-
creased from 0.84 to 0.85 (around 1.2%) and the accuracy@10 in-
creased from 0.86 to 0.88 (around 2.3%).

3.3 Inference phase
Finally, in the inference phase, we apply the best-performing n-
gram and BERT-based models (bidirectional 5-gram and BERT whole
word) to analyze the test steps of a new test case and recommend
improvements if necessary. We follow a similar process as we did
to compare the n-gram to the BERT model: we mask each word
at a time in the test step sentence and get the top-k predictions
from the n-gram. Then, we verify if (1) the n-gram backed off to the
unigram, (2) the n-gram has a prediction probability less than 0.5
for the first-ranked word, and (3) the sentence length is above 12
words. If all the three conditions occur, we use the bidirectional 5-
gram combined with the BERT whole word model, otherwise we use
only the bidirectional 5-gram. Then, if the original word is among
the top-k predicted words, the most appropriated word is already
being used, so we do not recommend any changes. Otherwise, we
present the recommendations to the user. Note that we filter out
stop word-related recommendations as they do not meaningfully
improve the test case descriptions.

Using Natural Language Processing Techniques to Improve Manual Test Case Descriptions ICSE-SEIP 2022, May 21-29, Pittsburgh, USA

Pre-
processed

existing test
cases

Pre-
processed

new test case

Named
Entity

Recognition
(NER)

Find frequent
sets of test steps

Build
association rules

Training phase

No recommendations
NO

YES

Recommend
test steps

Evaluation

Compute
confidence and
lift to assess

rules’ strength

Inference phase

confidence = 1
AND

lift > 1

Rules with lhs =
{new test steps}?

NO

YES

Figure 4: Our approach for recommendingmissing test steps
using association rules.

4 THE MISSING TEST STEP ANALYSIS
MODULE

Our approach for recommending test steps that are missing from
test cases first trains a model to identify sets of test steps that
frequently appear together in existing test cases and then builds
association rules based on those sets. The high-confidence rules
are then used to recommend test steps that are missing from a
new test case. Figure 4 presents an overview of our approach for
recommendingmissing test steps, which consists of a training phase,
evaluation of the model, and inference phase as we explain below.

4.1 Training phase
4.1.1 Named Entity Recognition (NER). Our approach first trains a
Named Entity Recognition (NER) model to identify proper names
of game assets (e.g., in-game items and game zones) in the test
steps and replace the assets’ names by the related entity. In our test
cases, similar test steps are executed to test different assets in the
game. For example, suppose the following steps are used to test if
a user can purchase item A: [“Log into the game”, “Purchase item
A”, “Verify item A is part of the student’s asset list”, “Log out of the
game”]. Now, suppose that a new item B is added to the game and a
new test case is added to the test suite to test if a user can purchase
item B: [“Log into the game”, “Purchase item B”, “Verify item B is
part of the student’s asset list”, “Log out of the game”]. The second
and third steps of test cases for A and B are textually different
but have the exact same meaning (the tester performs the same
action just with different items). Those steps are considered different
items when we use a frequent itemset technique. By replacing
the item names (A and B) with a placeholder that represents the
entity (e.g., 𝑎𝑠𝑠𝑒𝑡_𝑖𝑡𝑒𝑚), the second and third steps become the same
item for the mining technique and we can successfully identify the
frequent test steps and association rules. By using the NER model,
our approach for recommending missing steps becomes agnostic
to such named entities and flexible to support the evolution of the
game since different assets (e.g., items) are frequently added to the
game. Note that a pure keyword-based search is infeasible since
asset namesmight appear written differently in test cases (e.g., a mix
of lowercase and uppercase, different spacing, etc). Furthermore, the

list of keywords would need to be constantly updated. In contrast,
a trained NER model is capable of identifying asset names with a
high accuracy (including newly-added entities) based on the learned
textual patterns and sentence structure. Our trained NER model
was obtained by customizing the NER model provided by Spacy.3

4.1.2 Finding frequent sets of test steps and building test step as-
sociation rules. Frequent itemset mining is the process of finding
sets of items that occur together frequently across different trans-
actions [1, 2]. Using frequent itemsets, we can build association
rules which have the form {𝑋 } → {𝑌 }, where X (the antecedent)
and Y (the consequent) represent sets of one or more items that
occur together. Our goal is to discover sets of (one or more) test
steps that appear together across different test cases. Therefore, we
mapped the transactions to test cases and the items to test steps. To
obtain the frequent sets, and as the majority of the test steps does
not occur very frequently across different test cases, we empirically
set the minimum support (minimum frequency with which the sets
must occur in the test cases to be considered frequent) to 0.005. This
means that every test step set that occurs in at least 0.5% of the test
cases is considered a frequent set. Using the sets of test steps that
appear together, we build association rules to recommend missing
test steps from a new test case. In this work, we train a model that
uses the popular and efficient FP-Growth (Frequent Pattern Growth)
algorithm [14, 15] to mine frequent itemsets and association rules.
FP-Growth is suitable for our work since we use a low minimum
support threshold, for which FP-Growth is very efficient [14].

4.2 Evaluation
4.2.1 Evaluation metric. To evaluate the strength of the built rules,
we focus on the confidence and lift metrics. The confidence of a
rule corresponds to the conditional probability of the consequent
occurring (the right-hand side of the rule) given that the antecedent
occurred (the left-hand side of the rule). Even though the confidence
metric already indicates the rules’ strength, it might be misleading
in scenarios of a highly frequent consequent, in which the confi-
dence would be misleadingly high. Therefore, we also use the lift
metric to asses the rules’ strength and interestingness [3, 26]. The
lift of a rule {𝑋 } → {𝑌 } represents how much the probability of
Y occurring with the knowledge that X occurred (i.e., the condi-
tional probability of Y given X) changes related to the occurrence
frequency of Y alone. In practice, a lift above 1 indicates that the
occurrence of X has a positive effect on the occurrence of Y.

4.2.2 Evaluation setup. Our evaluation setup consists of simulating
the process of designing a new test case and adding it to the test
suite. We assume that a certain number of test cases are already in
the test suite and use those test cases to build the association rules.
In our case, we selected the first 2500 test cases in our data (about
75% of the data) to build the rules. We then applied the built rules
to the 2501th test case, which we suppose is a new one. In the next
iteration, we added the 2501th test case to the test suite, built the
rules with those 2501 test cases, and applied the rules to the 2502th
test case. This process continued until we reached the last test case
(the 3323th one).

3https://spacy.io/

https://spacy.io/

ICSE-SEIP 2022, May 21-29, Pittsburgh, USA Viggiato et al.

For each iteration, we computed the accuracy of the rules’ rec-
ommendations for a new test case to verify how often the recom-
mended test steps are correct. To do this, for each new test case, we
removed one of its test steps at a time, applied the rules to the re-
maining test steps, and checked if the removed test step was among
the test steps recommended by the rules. If it was, the rule made
a correct suggestion (1), otherwise it was a wrong suggestion (0).
Then, we computed the accuracy (proportion of correct suggestions)
using all the selected rules. We followed this process for every test
step in a new test case and computed the average and median accu-
racy for the whole test case. Note that we only selected the rules
that have a minimum confidence (min_confidence) and a minimum
lift (min_lift). For our experiments, we used a min_confidence of 0.5
and a min_lift above 1, and a stricter criteria with a min_confidence
of 1 (the highest possible) and a min_lift above 1 as well.

4.2.3 Evaluation results. Using amin_confidence of 0.5with amin_lift
above 1, we obtained 1,060 association rules to recommend missing
test steps for a new test case. Those rules have an average accu-
racy of 0.72 (and a median of 1) across all the new test cases as we
explained in Section 4.2.2. This means that, on average, the recom-
mendations by the rules are correct 72% of the time per test case.
For a min_confidence of 1 with a min_lift above 1, we obtained 475
association rules, which is less than before as we applied a stricter
min_confidence. Those rules have an average accuracy of 0.98 (and
a median of 1) across all the new test cases, which means that, on
average, the recommendations by the stricter rules were correct
98% of the time per test case.

4.3 Inference phase
Finally, we use the built association rules with high confidence and
lift metrics with the test steps of a new test case to recommend
test steps that are potentially missing from the new test case. To be
consistent, we also apply the trained NER model to the test steps
of the new test case to identify and replace game assets’ names.
We then use two criteria to select strong rules to be used. First,
we only select the rules for which the antecedent (left-hand side)
matches exactly to the set of test steps of the new test case since
we want to suggest other test steps that occurred together with
the newly-specified ones. Second, we select the best-performing
rules, i.e., only rules with a confidence of 1 (the highest confidence
possible) and a lift metric above 1. These criteria help us to ensure
we are using strong rules to provide suggestions and reduce false
positives.

5 THE TEST CASE SIMILARITY ANALYSIS
MODULE

Our approach for recommending similar test cases was proposed in
our prior work [35]. The approach consists of two stages: (1) clus-
tering similar test steps using text embedding, text similarity, and
clustering techniques (test step-level stage), which is based on the
work by Li et al. [22] and (2) identifying similar test cases using
the clusters of test steps (test case-level stage). Figure 5 gives an
overview of how our approach for identifying similar test cases was
integrated as an analysis module which consists of a training phase,
evaluation of the models, and an inference phase as we explain

Pre-
processed

existing
test cases

Pre-
processed
new test

case

Training phase

Inference phase

Identify similar
test cases based

on clusters

{TC2, TC3}

Embed new
test steps

[0.53, 1.32 …]
[0.10, 5,36 …]

Update existing
test step clusters

Embed
test steps

Compute text
similarity

Cluster similar
test steps

Pairwise
similarity score

Represent test cases
with test step clusters

Evaluation

Build
ground
truth of

similar test
steps

Compute
F-score for
test step

clustering

Build
ground
truth of

similar test
cases

Compute
F-score for
test case
similarity

[0.53, 1.32 …]
[0.10, 5,36 …]

Figure 5: Our approach for recommending similar test cases
using text embedding and clustering techniques.

below. In this section, we give a concise overview of the approach
that was presented in detail in our prior work [35].

5.1 Training phase
Our approach starts by transforming the test step sentences into
one or more numeric vectors (text embedding), which is necessary
to apply a machine learning algorithm [37]. The pairwise distance
between test step embeddings is then computed, which we use to
capture the similarity between the test steps. In particular, embed-
dings that are close in the embedding space should represent similar
test steps. Finally, our approach leveraged the computed distance
to identify clusters of similar test steps (i.e., test steps that have a
small distance between them should belong to the same cluster).

In the second stage, our approach leverages the obtained clusters
of similar test steps together with the test case name to identify sim-
ilar test cases. The approach first obtains a numeric representation
(i.e., a vector) for each test case based on the clusters to which the
test steps of that test case belong, as shown in Figure 5. Then, the
pairwise similarity between test cases is computed (which we call
the test step cluster-based similarity score since it is computed using
the test step clusters). Next, to incorporate knowledge from the test
case name, the approach embeds the test case names and computes
their pairwise similarity (which we call the test case name-based
similarity score since it is compute using the test case names). Fi-
nally, the approach computes a final similarity score which is a
weighted average between the test step cluster-based similarity score
and the test case name-based similarity score. In our prior work [35],
we thoroughly evaluated the described approaches with several
different techniques using the data from our industry partner.

5.2 Evaluation
Based on our prior work [35], we selected the best performing ap-
proach for clustering similar test steps, which uses Word2Vec [27]

Using Natural Language Processing Techniques to Improve Manual Test Case Descriptions ICSE-SEIP 2022, May 21-29, Pittsburgh, USA

to embed the test steps, the Word Mover’s Distance (WMD) met-
ric [20] to compute the similarity between test step embeddings,
and K-means [11] to cluster the test steps. We also selected the
best-performing approach for identifying similar test cases, which
uses cosine to compute the similarity between test cases’ numeric
representations with an optimal threshold of 0.75. This means that
if an existing test case has a final cosine similarity score of more
than 0.75 with the new test case, the existing test case is considered
a similar test case. Furthermore, our prior work indicated that the
optimal balance between the test step cluster-based similarity score
and the test case name-based similarity score is 50%.

5.3 Inference phase
Finally, in the inference phase, we use the best-performing models
to cluster similar test steps (Word2Vec + WMD + k-means) and
identify similar test cases to retrieve the existing test cases that are
similar to the new test case. Our approach starts by embedding the
test steps of the new test case using Word2Vec. Then, the existing
test step clusters, obtained with the test step clustering approach,
are updated with the new test steps (using the distance between
their embeddings). Finally, the approach to identify similar test
cases is used to retrieve all the existing test cases that have a cosine
similarity score higher than 0.75 compared to the new test case.

6 RELATEDWORK
In this work, we apply several NLP techniques to automatically an-
alyze and provide feedback to improve the description of test cases
specified in natural language. Prior work used those techniques
to assist software testing and other software engineering tasks in
many different ways, as we discuss below.

Wang et al. [36] proposed an approach to automate the genera-
tion executable, system-level test cases for acceptance testing from
natural language use case specifications. The approach relies on
a domain model (i.e., a class diagram) and uses several NLP tech-
niques (e.g., Named Entity Recognition and part-of-speech tagging).
Two industrial case studies were used to evaluate the approach,
which correctly generated test cases that exercise different scenar-
ios manually implemented by experts. Mai et al. [25] proposed an
approach to automatically generate executable test cases from use
case specifications that capture malicious behavior of users. The
evaluation through a case study in the medical domain indicated
that the proposed approach can automatically generate test cases
that can detect vulnerabilities. Hemmati and Sharifi [17] proposed
an approach to predict the failure of system-level test cases speci-
fied in natural language. The approach relies only on the test case
description in natural language and seeks to enhance the perfor-
mance of history-based prediction models (i.e., models that use test
execution failure history) by including natural language features
(e.g., obtained through Part-of-Speech tagger) weighted with TF-
IDF. The approach evaluation showed that using natural language
features improve the performance of the failure prediction model.
Finally, Hemmati et al. [16] investigated approaches to prioritize
test cases described only in natural language. The authors used
three types of heuristics for test case prioritization, including topic
coverage-based and risk-driven heuristics (using the test case risk
of detecting a fault based in its fault detection history).

The aforementioned works used NLP for different tasks, such as
to analyze use cases described in natural language and automati-
cally generate executable test cases. In contrast, we use several NLP
techniques such as text embedding and Named Entity Recognition
as part of an automated framework for automatically analyzing
newly-specified manual test cases and providing feedback to im-
prove the test case descriptions.

Language modeling is another NLP technique that has been used
in software engineering, mainly for code completion tasks [23, 29].
For instance, while Nguyen et al. [29] used program analysis and
a statistical language model (n-gram) to develop a technique to
complete code, Liu et al. [23] used a transformer-based neural archi-
tecture to develop multi-task learning based pre-trained language
model for code understanding and code generation. Differently
from those works, we are the first, to the best of our knowledge, to
use language modeling to model test case specifications in natural
language and recommend improvements by identifying words in
the description that could be replaced by more likely words, based
on word usage in previous test cases.

7 THREATS TO VALIDITY
A threat to the external validity concerns to the generalizability of
our automated framework and its module evaluations. Our findings
rely on the test cases from an educational math game and using
test cases of a system from a different domain might yield different
results. Another threat is that the achieved results might differ
if other text embedding, clustering, or frequent itemset mining
techniques are used. Future studies should investigate whether our
analysis modules can be improved using other techniques.

A threat to the internal validity is related to the selection of the
association rules used to recommend missing test steps for a new
test case. First, we only use rules with either a confidence above 0.5
or exactly 1 and a lift above 1. Second, our rules only recommend
one test step (i.e., there is only one set in the consequent of a rule).
Future work should investigate a wider range of the confidence
and lift metrics and whether having more than one consequent
in a rule improves our missing test step analysis module. Another
threat concerns the choice of only one architecture (transformers)
for the neural language models. Other model architectures (e.g.,
RNN/LSTM), should also be investigated. Finally, the evaluations
performed for the analysis modules used the existing test cases,
which are unoptimized. Even though the test cases were written
by experienced QA engineers and developers, at this moment, we
are focusing on ensuring that new test cases are improved as much
as possible before they are entered into the test suite. In the future,
we will also work on improving the existing test cases.

8 CONCLUSION
In this paper, we propose an automated framework for automat-
ically analyzing and providing feedback on how to improve the
description of manual test cases. We discuss three analysis modules
that were implemented for our framework so far. These modules
are capable of recommending improvements to the following: (1)
the terminology of a new test case, (2) potentially missing test steps
for a new test case, and (3) recommendations of similar test cases

ICSE-SEIP 2022, May 21-29, Pittsburgh, USA Viggiato et al.

that already exist in the test suite. The three modules were thor-
oughly evaluated on the data from our industry partner with the
test cases designed to test the Prodigy Math game. Our evaluation
results show that we can achieve a high accuracy (up to 88%) to
recommend terminology improvements with statistical and neu-
ral language models. Also, on average, our association rules can
correctly recommend missing test steps 98% of the time per test
case. Finally, we can identify similar test cases with a high perfor-
mance (an F-score of approximately 83%) using text embedding,
text similarity, and clustering techniques. Our proposed framework
uses an innovative and efficient way of combining traditional and
state-of-the-art techniques to automatically analyze test cases in
natural language. The framework is capable of providing actionable
recommendations, which is an important challenge given the wide-
spread occurrence of test cases that are written in natural language
in the software industry (in particular, the game industry).

ACKNOWLEDGMENTS
The research reported in this article has been supported by Prodigy
Education and the Natural Sciences and Engineering Research
Council of Canada under the Alliance Grant project ALLRP 550309.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association

rules between sets of items in large databases. In ACM sigmod record, Vol. 22.
ACM, 207–216.

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
A Inkeri Verkamo, et al. 1996. Fast discovery of association rules. Advances
in knowledge discovery and data mining 12, 1 (1996), 307–328.

[3] D Magdalene Delighta Angeline et al. 2013. Association rule generation for
student performance analysis using apriori algorithm. The SIJ Transactions on
Computer Science Engineering & its Applications (CSEA) 1, 1 (2013), 12–16.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
neural probabilistic language model. The Journal of Machine Learning Research 3
(2003), 1137–1155.

[5] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
The Journal of Machine Learning Research 3 (2003), 993–1022.

[6] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean. 2007.
Large language models in machine translation. (2007).

[7] Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and
Robert L Mercer. 1992. Class-based n-gram models of natural language. Compu-
tational linguistics 18, 4 (1992), 467–480.

[8] Christian Buck, Kenneth Heafield, and Bas Van Ooyen. 2014. N-gram Counts
and Language Models from the Common Crawl.. In LREC, Vol. 2. 4.

[9] Tze Yuang Chong, Rafael E Banchs, and Eng Siong Chng. 2012. An empirical
evaluation of stop word removal in statistical machine translation. In Proceedings
of the Joint Workshop on Exploiting Synergies between Information Retrieval and
Machine Translation (ESIRMT) and Hybrid Approaches to Machine Translation
(HyTra). 30–37.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Richard O Duda, Peter E Hart, and David G Stork. 1973. Pattern classification and
scene analysis. Vol. 3. Wiley New York.

[12] Vahid Garousi, Sara Bauer, andMichael Felderer. 2020. NLP-assisted software test-
ing: A systematic mapping of the literature. Information and Software Technology
126 (2020), 106321.

[13] Vahid Garousi and Junji Zhi. 2013. A survey of software testing practices in
Canada. Journal of Systems and Software 86, 5 (2013), 1354–1376.

[14] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. In ACM sigmod record, Vol. 29. ACM, 1–12.

[15] Jiawei Han, Jian Pei, Yiwen Yin, and RunyingMao. 2004. Mining frequent patterns
without candidate generation: A frequent-pattern tree approach. Data mining
and knowledge discovery 8, 1 (2004), 53–87.

[16] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. 2015. Prioritizing manual
test cases in traditional and rapid release environments. In Proceedings of the 8th
Int’l Conference on Software Testing, Verification and Validation (ICST). 1–10.

[17] Hadi Hemmati and Fatemeh Sharifi. 2018. Investigating nlp-based approaches
for predicting manual test case failure. In Proceedings of the 11th Int’l Conference
on Software Testing, Verification and Validation (ICST). 309–319.

[18] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the naturalness of software. Commun. ACM 59, 5 (2016), 122–131.

[19] Daniel Jurafsky and James H Martin. 2009. Speech and Language Processing.
(2009).

[20] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In Proceedings of the 32nd Int’l Conference on
Machine Learning (ICML). 957–966.

[21] Ke Li, Zhe Liu, Tianxing He, Hongzhao Huang, Fuchun Peng, Daniel Povey,
and Sanjeev Khudanpur. 2020. An empirical study of transformer-based neural
language model adaptation. In Int’l Conference on Acoustics, Speech and Signal
Processing (ICASSP). 7934–7938.

[22] Linyi Li, Zhenwen Li, Weijie Zhang, Jun Zhou, Pengcheng Wang, Jing Wu,
Guanghua He, Xia Zeng, Yuetang Deng, and Tao Xie. 2020. Clustering test steps
in natural language toward automating test automation. In Proceedings of the
28th Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 1285–1295.

[23] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-
trained language model for code completion. In Proceedings of the 35th Int’l
Conference on Automated Software Engineering (ASE). 473–485.

[24] Jeffrey D Long, Du Feng, and Norman Cliff. 2003. Ordinal analysis of behavioral
data. (2003).

[25] Xuan Phu Mai, Fabrizio Pastore, Arda Göknil, and Lionel Briand. 2018. A natural
language programming approach for requirements-based security testing. In
Proceedings of the 29th Int’l Symposium on Software Reliability Engineering (ISSRE).

[26] Paul David McNicholas, Thomas Brendan Murphy, and M O’Regan. 2008. Stan-
dardising the lift of an association rule. Computational Statistics & Data Analysis
52, 10 (2008), 4712–4721.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[28] Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural net-
work language model. In Int’l Workshop on Artificial Intelligence and Statistics.
246–252.

[29] Son Nguyen, Tien Nguyen, Yi Li, and Shaohua Wang. 2019. Combining program
analysis and statistical language model for code statement completion. In Pro-
ceedings of the 34th Int’l Conference on Automated Software Engineering (ASE).
710–721.

[30] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development
in open source?. In Proceedings of the 15th Int’l Conference on Mining Software
Repositories (MSR). 392–402.

[31] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[32] Cristiano Politowski, Fabio Petrillo, and Yann-Gäel Guéhéneuc. 2021. A Survey
of Video Game Testing. arXiv preprint arXiv:2103.06431 (2021).

[33] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’sd indices the most appropriate
choices. In Annual meeting of the Southern Association for Institutional Research.
1–51.

[34] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong.
2002. Empirical studies of test-suite reduction. Software Testing, Verification and
Reliability 12, 4 (2002), 219–249.

[35] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2021. Identifying
Similar Test Cases That Are Specified in Natural Language. http://asgaard.ece.
ualberta.ca/papers/preprint/markos_preprint_test_similarity.pdf. [This work
was submitted to the IEEE Transactions on Software Engineering journal and is
undergoing a major revision].

[36] ChunhuiWang, Fabrizio Pastore, Arda Goknil, and Lionel Briand. 2020. Automatic
generation of acceptance test cases from use case specifications: an nlp-based
approach. IEEE Transactions on Software Engineering (2020).

[37] Sholom MWeiss, Nitin Indurkhya, Tong Zhang, and Fred Damerau. 2010. Text
mining: predictive methods for analyzing unstructured information. Springer
Science & Business Media.

[38] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196–202.

[39] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. 2020. Transformers: State-of-the-Art Natural Language Processing.
, 38–45 pages. https://www.aclweb.org/anthology/2020.emnlp-demos.6

http://asgaard.ece.ualberta.ca/papers/preprint/markos_preprint_test_similarity.pdf
http://asgaard.ece.ualberta.ca/papers/preprint/markos_preprint_test_similarity.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Abstract
	1 Introduction
	2 Our automated framework for analysis and feedback
	2.1 Data preparation component
	2.2 Analysis component
	2.3 Report generation component
	2.4 Using the framework in practice
	2.5 A description of our dataset

	3 The terminology improvement analysis module
	3.1 Training phase
	3.2 Evaluation
	3.3 Inference phase

	4 The missing test step analysis module
	4.1 Training phase
	4.2 Evaluation
	4.3 Inference phase

	5 The test case similarity analysis module
	5.1 Training phase
	5.2 Evaluation
	5.3 Inference phase

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	References

