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ABSTRACT
Bad smells are symptoms that something may be wrong

in the information system design or source code. Although
bad smells have been widely studied, we still lack an in-deep
analysis about how they appear more or less frequently in
specific information systems domains. The frequency of bad
smells in a domain of information systems can be useful, for
instance, to allow software developers to focus on the more
relevant bad smells of a certain domain. Moreover, devel-
opers of new bad smell detection tools could take informa-
tion about domains into consideration to improve the tool
detection rates. In this paper, we investigate code smells
more likely to appear in four specific information systems
domains: accounting, e-commerce, health, and restaurant.
Our analysis relies on 52 information systems mined from
GitHub. We identified bad smells with two detection tools,
PMD and JDeodorant. Our findings suggest that Com-
ments is a domain-independent bad smell since they uni-
formly appear in all investigated domains. On the other
hand, Large Class and Long Method can be consid-
ered domain-sensitive bad smells since they appear more
frequently in accounting systems. Although less frequent in
general, Long Parameter List and Switch Statements
also appear more in health and e-commerce systems, respec-
tively, than in other domains.
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1. INTRODUCTION
A bad smell is any symptom that may indicate a deeper

quality problem in the information system design or source
code [7]. Bad smells are considered expensive because they
represent poor solutions that hinder software maintenance
tasks [5]. Several factors may contribute to the addition of
bad smells in information systems. For instance, software
developers can introduce a bad smell due to their wrong
understanding of the system context, including misunder-
standing of domain-specific requirements. In fact, previous
works suggest that software quality and the presence of bad
smells may depend on the information system domain [3,
5]. However, code smell detection tools ignore information
related to the system domain [8].

Many studies have been published in the literature on code
smells and their detection strategies [1, 4, 18]. However,
the relationships between bad smells and information sys-
tems domains have been little studied so far. Most research
that investigates bad smells in systems domains reports only
on preliminary small-scale studies [3, 5, 8]. In addition,
they found conflicting results. For instance, Fontana et al.
[5] identified that Duplicate Code, Data Class, Large
Class, and Long Method are in general most common,
but at the domain level, significant di↵erences among bad
smells were not observable. On the other hand, Linares-
Vasquez [13] found that some bad smells are common in all
domains while others, such as Blob (see in [15]), are more
common in certain domains (e.g., Science and Education).

It is important to know how frequent a bad smell is in a
domain for several reasons. For instance, this information
could help developers of information systems to focus their
attention on the smells that mostly contribute to the de-
terioration of the source code quality. It can also help the
development of new bad smell detection tools with better
detection rates since di↵erent domains may require di↵er-
ent detection strategies. Therefore, if the frequency of bad
smells significantly varies by domains, then it is important
to report such variations and to understand why they occur.

This paper describes an empirical study on the detec-
tion of bad smells, aiming at identifying the most frequent
smells in di↵erent domains of information systems domains.
We perform an analysis on 52 object-oriented Java infor-
mation systems mined from GitHub of 4 di↵erent domains:
accounting, e-commerce, health, and restaurant. We rely on
PMD [5] and JDeodorant [22] to detect 6 types of bad smells
in the target information systems. However, we discarded
JDeodorant tool, because we were not able to execute it in
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  information systems that are not buildable in Eclipse. As
there are several systems in this condition, we performed our
study only using the PMD tool. The detected bad smells are
Large Class, Long Method, Long Parameter List,
Switch Statements, Comments, and Dead Code.

From our findings, we can classify the bad smells in 2
groups, namely: (i) domain-sensitive bad smells that ap-
pear more frequently in some domains than in others and (ii)
domain-independent bad smells that appear in all domains
with no significant di↵erence. For instance, Comments is a
domain-independent bad smell since it uniformly appears in
all investigated domains. On the other hand, Large Class
and Long Method can be considered domain-sensitive bad
smells since they appear more frequently in accounting sys-
tems and the later is also very common in health systems.
In this study, we also observe that Long Parameter List
and Switch Statements are rare in all domains. Although
less frequent, Long Parameter List appear more in health
systems while Switch Statements is more common in e-
commerce systems.
The remainder of this paper is organized as follow. Sec-

tion 2 presents a background to support the comprehension
of our work. Section 3 presents the configurations of our
study. Section 4 reports and discusses the obtained results.
Section 5 indicates the threats to the study validity. Sec-
tion 6 discusses related work. Finally, Section 7 concludes
our study and discusses some points for further work.

2. BACKGROUND
In this section we define the bad smells used in this study

and the strategies for detecting bad smells.

2.1 Bad Smells
Bad smells are symptoms that may indicate a deeper qual-

ity problem in the information system design or code [7]. A
bad smell may have been caused by poor design choices or by
misunderstanding of domain-specific requirements [7, 9, 19,
20]. Bad smells are often associated with increasing in devel-
opment and maintenance costs since it is harder for software
developers to modify and evolve an information system that
contains many bad smells [19]. Fowler [7] defined a set of 22
bad smells and we selected 5 among them, because previous
studies have shown that they are very common in informa-
tion systems. We also included Dead Code in this study
since it is one of the most studied and used bad smells [2].
Table 1 presents a brief definition of each bad smell consid-
ered in this study. The definitions are in accordance with
Fowler [7] and Lanza et al. [12].
During the process of choice of these bad smells we also

took in account that they can be automatically detected
by the tools we used: PMD and JDeodorant. In total, our
analysis relies on 6 types of bad smells: Large Class, Long
Method, Long Parameter List, Switch Statements,
Comments, and Dead Code.

2.2 Detection Strategies and Tools
There are several techniques to identify bad smells [1, 11,

16]. Bad smells can be detected in source code by either
using manual or automated analysis. Tools support auto-
mated analysis relying usually on di↵erent detection strate-
gies, such as software metrics [12, 16] and program slicing
[10]. This variety of strategies allows detection of di↵erent
types of bad smells. However, it is important to highlight

Table 1: Types of bad smells

Bad Smell Definition

Large Class It defines a class that tends to central-
ize the intelligence of the system, for
instance, with several methods and at-
tributes. It usually has an excessive code
size.

Long Method It is a method too long in Lines of Code
so it is di�cult to be understood and
changed. In general, it tends to central-
ize the functionality of a class, similarly
to a Large Class.

Comments It occurs when large blocks of comments,
written to explain poorly implemented
code snippets

Dead Code Code that has been used in the past, but
is not currently used

Long Parameter List It occurs when the parameter list in a
method is too long and thus di�cult to
understand.

Switch Statements Identified when the same switch state-
ment (or âĂIJifâĂ ,eelseâĂİ, statement) is
scattered in a program in many di↵erent
places.

that, as far as we are concerned, existing bad smell detec-
tion tools do not use information related to domain of the
information systems [5]. In this paper, we used 2 bad smell
detection tools: PMD and JDeodorant. Their characteris-
tics can be verified in Table 2 and are detailed as follows.

Table 2: Bad smells detection tools
Features JDeodorant PMD

Type Eclipse plug-in
Eclipse plug-in

and
Standalone

Version 5.0.64 / 2016 5.5.4 / 2017

Supported
Languages

Java
C,C#,

C++, JAVA
PHP and 11 others

Bad Smell
Detected

Large Class
Feature Envy
Long Method
Type Checking

Dead Code
Comments
Large Class
Long Method

Duplicated Code
Long Parameter List

PMD is an open-source tool for Java and an Eclipse plug-
in. It searches for potential issues in the source code, such as
Dead code, empty try/catch blocks, Long Switch State-
ments, Unused Local Variables, and Over Compli-
cated Expressions. Moreover, PMD allows the user to
set parameters to customize its detection strategies [6, 14,
17]. In our study, however, we rely on the default configu-
ration of both tools.

JDeodorant is an open-source tool that automatically iden-
tifies 4 bad smells [22]: Large Class, Large Method,
Feature Envy, and Switch Statements. JDeodorant
uses metrics and program slicing techniques to detect bad
smells [22]. PMD and JDeodorant were selected because
are available for download and are free for use. Besides,
both tools have been actively developed and maintained [6].
Other studies on bad smells have also used these tools [1, 4,
24]. Table 2 presents information about the selected tools.
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  3. STUDY SETTINGS
This section describes an empirical evaluation to identify

domain-sensitive bad smells. For this purpose, we designed
an exploratory study conducted based on guidelines for em-
pirical studies [23]. Section 3.1 presents the study goal and
research questions designed to guide our study. Section 3.2
describes the phases to evaluate our study. Finally, Section
3.3 discusses the steps for collecting the target information
systems from GitHub.

3.1 Goals and Research Questions
The main goal of this study is to analyze the occurrence

of bad smells in information systems from the following do-
mains: accounting, e-commerce, health, and restaurant. We
are interested in assessing the domain-sensitive bad smells
and the domain-independent ones. For this purpose, we con-
ceived the following research questions (RQs) to guide our
study.

RQ1 What are the most frequent bad smells in each infor-
mation system domain?

RQ2 What are the domain-independent bad smells?

Through RQ1, we are interested on investigating the fea-
sibility to identify and list the bad smells that are more
common within the selected domains. On the other hand,
with RQ2, we aim to identify and catalog bad smells that
uniformly appear regardless the software domain, i.e., those
bad smells that have high chance to occur in many applica-
tion domains with no significant di↵erence.

3.2 Evaluation Phases
To answer the research questions presented in Section 3.1,

we designed a study composed of four phases presented in
Figure 1. Each phase is discussed as follows.

Figure 1: Study Phases

Phase 1) Data Set Mining - We searched for informa-
tion systems sorted by stars in GitHub. Stars are a mean-
ingful measure for repository popularity among the platform
users, and they may be used to support the selection of well
evaluated projects. To retrieve the information systems, we
used some keywords such as: accounting, e-commerce, elec-
tronic commerce, hospital, infirmary, and restaurant. Sec-
tion 3.3 presents the data set extraction in more details.

Phase 2) Bad Smell Selection - We selected 6 types of
bad smells: Large Class, Long Method, Long Param-
eter List, Switch Statements, Comments, and Dead
Code. This selection was adopted because previous studies
have shown that they are very common in information sys-
tems and the results obtained by these studies are conflicting
[5, 13]. There is, also, a lack of an in-deep analysis of these
smells according to the system domains, trying to establish
a relationship between them. In addition, these bad smells

can be automatically detected by the tools we used: PMD
and JDeodorant. It is important to note that we discarded
JDeodorant tool, because we were not able to execute it
in information systems that cannot be built in Eclipse. As
there are several systems from GitHub in this condition, we
performed our study using only PMD detection tool.

Phase 3) Identification of bad smells - To avoid bi-
asing the results, we decided to use both tools in the default
configuration. We analyzed each information system at a
time in Eclipse, using the plug-in of the selected tools.

Phase 4) Analysis - We cloned the information systems
from the four domains from GitHub. We run the two tools
and compute their output results. Each bad smell from each
domain was stored in spreadsheets so that we could calcu-
late the occurrences by domain, with the aim of identify-
ing the more frequent bad smells (domain-sensitive) and the
domain-independent ones.

3.3 Data Set Mining
To evaluate our study, we chose systems from the men-

tioned domains for several reasons. First, these informa-
tion systems, in general, are intuitive systems and easy to
evaluate. Second, there is a large number of these systems
available for download in GitHub. Third, since the selected
systems are within well-defined domains, we believed that it
would be easy to identify domain-specific requirements that
influence the number of bad smells. The systems that com-
pose our data set were retrieved from GitHub repositories
in October 2016. We performed 5 steps to collect the infor-
mation systems from GitHub, as indicated in Figure 2 and
described as follows.

Figure 2: Steps for Collecting Systems from GitHub

In step (1), we performed a preliminary search to evalu-
ate the feasibility of collection of the selected information
systems. In step (2), we define appropriate search strings
per domain since there is a diverse terminology to represent
the same software domain on GitHub. For instance, we may
refer to the e-commerce domain as ecommerce, without hy-
phenation. Thus, to collect the information systems that
compose our data set we developed an algorithm to search
automatically within GitHub. Since the goal of our study
is to detect bad smells from di↵erent information systems,
given large system sets per domain, we defined the search
strings presented in Table 3.

Table 3: Search string per domain
Domain Search String

Accounting Accountancy OR Accounting
Restaurant Restaurant OR Eatery OR Restaurants

Health Hospital OR Infirmary OR Health
E-Commerce E-Commerce OR Ecommerce OR Electronic

Commerce

In step (3), we run the algorithm, as mentioned in the
step (2) to clone the information systems to a local storage.
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  This step is necessary, because we know that several sys-
tems are hosted in GitHub and a manual cloning would be
infeasible. From the previous steps, it was possible to ob-
tain 400 information systems, 100 for each domain sorted in
descending order by stars. In step (4), aiming at restricting
our data set in order to obtain the most relevant systems,
we applied the following exclusion criteria: First, non-Java
information systems (remaining 280 systems), since GitHub
does not verify automatically the main programming lan-
guages of the systems and the selected tools are specific to
Java programming languages. Second, projects developed
for Android platform (remaining 130 systems), because An-
droid systems tend to have a di↵erent architectural design
and code implementation when compared with traditional
Java systems. Third, systems with less than 1,000 lines of
code (remaining 52 systems). After applying these filters
presented in step (4), we obtained 52 systems. Therefore, in
step (5), our data set is finally composed by 52 information
systems to support the identification of the bad smells.

To better characterize the our data set, we computed the
metrics fromMetrics1 plug-in. Table 4 presents the following
metrics computed per domain: lines of code (LOC), number
of classes (NOC), number of methods (NOM) and number
of attributes (NOA), respectively. The presented values cor-
respond to the sum of each metric for the respective domain.
As we can see, the accounting domain is the biggest one in
code size, having more than 71 KLOC, while restaurant is
the smallest one, with less than 32 KLOC.

Table 4: Data Set Characterization
Software
Domains

# Systems LOC NOC NOM NOA

Accounting 10 71,547 387 5,619 4,367
E-commerce 19 57,366 832 5,531 2,277
Hospital 11 49,121 392 3,557 2,957

Restaurant 12 31,872 468 3,183 1,362

4. RESULTS
This section presents the results and analysis. We ana-

lyzed 52 systems mined from GitHub from accounting, e-
commerce, health, and restaurant domains. Six bad smells
were analyzed in these systems with the PMD detection
tool. We organize our discussion in four parts. Section 4.1
presents an overview of the detected bad smells in our data
set. Section 4.2 discusses the percentage of systems with
bad smells found in each domain. Section 4.3 analyzes the
percentage of occurrence of each bad smell according to the
entity which the smell is related to. For example, the per-
centage of Large class is related to the total number of
classes within the domain, the percentage of Long method
and Long parameter list are evaluated according to the
number of methods in the domain since these bad smells are
related to methods, and so on. Finally, Section 4.4 presents
a joint frequency analysis by systems and by entities.

4.1 Overview
In order to understand how the bad smells are distributed

over our dataset, we first investigated all systems from all
domains together. Figure 3 shows the percentage of systems
with each bad smell in all domains. Data in this figure show
that four (out of six) kinds of bad smells are very common

1http://metrics.sourceforge.net/

in the selected systems. In fact, we detected Comments in
all systems of our data set.

According to our data, the second more common bad smell
is Dead Code. This bad smell was detected in 73% of the
systems in all domains. Large Class and Long Method
are also very common since they could be found in about
60% of the systems. On the other hand, Long Parameter
List and Switch Statements are the least frequent bad
smells, appearing, respectively, in 23% and 13% of the sys-
tems.

Figure 3: Percentage of Systems with Bad Smells

4.2 Frequency Analysis by Systems
With the aim of identifying which bad smells are more

common in each domain, we conducted a detailed study on
the frequency of each selected bad smell in systems of spe-
cific domains. Figure 4 presents the six bad smells and
their frequency in each domain. For instance, Comments
was found in all systems of every domain. Therefore, its fre-
quency is 100% for all domains. This result is expected since
all systems in our data set have Comments, as discussed in
Section 4.1. Although highly frequent, Comments may
not be considered a serious problem because someone could
argue that they do not directly a↵ect the system behavior.
However, according to Fowler [7], Comments may be used
to hide a possible bad design and that is why we decided to
include it in our analysis.

Apart fromComments, Large Class and Long Method
are the most frequent bad smells in accounting systems. In
fact, all accounting systems in our data set have at least one
instance of Large Class. Similarly, Long Method is in
about 90% of systems in this domain. It is interesting to
see, however, that these two bad smells are not so common
in the other domains. That is, Large Class could only be
found in about 50% of systems in the e-commerce, health,
and restaurant domains. Long Method was found in more
than 60% of e-commerce systems, the second domain with
higher frequency. However, it is still clear that both Large
Class and Long Method seem to be domain-sensitive bad
smells with the highest frequency in accounting systems.

Figure 4 also shows interesting results for Long Param-
eter List. PMD found this bad smell in about 45% of
systems in the heath domain. On the other hand, only
25% of e-commence systems and 20% of accounting systems
have Long Parameter List. This large di↵erence suggests
that Long Parameter List is a domain-sensitive bad smell
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  with the highest frequency in health systems. Our data
do not allow us to say whether Dead Code and Switch
Statements are domain-independent or domain-sensitive
bad smells.

Figure 4: Frequency of Bad Smells in Software Do-
mains

4.3 Frequency Analysis by Entity
The previous section presented the percentage of systems

with a bad smell in each domain. However, a bad smell may
appear in most systems of a domain, but in only a few parts
of these systems. That is, it could be rare in classes of a
system, although some instances exist in most systems.

To address this point, this section analyzes the frequency
of occurrence of each bad smell with respect to the entity
with which the smell is related to. For instance, if we are
analyzing the frequency of Large Class, we have to divide
the number of smells by the number of classes. The infor-
mation about the frequency by entity and the frequency by
systems complement each other to support stronger conclu-
sions about domain-sensitive bad smells.

The entity is defined according to each bad smell. In this
way, we have the frequency of Large Class evaluated in
relation to the number of classes (NOC), which is our first
entity. Since the smells Long Method and Long Param-
eter List are related to the method entity, their frequency
is calculated according to the number of methods (NOM)
within the domain. Finally, Switch Statement and Dead
Code have no relation with a specific entity and then we ob-
tain their frequency of occurrence using KLOC. It is impor-
tant to note that we excluded Comments from this analysis
because we observed that it is highly frequent in all domains
(Section 4.2).

In order to evaluate the frequency of Large Class re-
lated to the class entity for each domain, we first count the
total number of Large Class in a domain and then we
divide this number by the total number of classes. This pro-
cedure is done for every domain separately and the results
are presented in Figure 5.

Data in Figure 5 show that Large Class has the highest
frequency of occurrence in the accounting domain in com-
parison to other domains. In fact, it is present in approxi-
mately 0.18 (18%) of the classes of accounting, i.e., 18% of
the classes of this domain are Large classes. E-commerce
and health have about 4% of Large classes each one, while
restaurant has the lowest frequency, approximately 3%.The

Figure 5: Frequency of Large Class in Domains by
Entity

significant di↵erence between accounting and the other do-
mains suggests that Large Class is a domain-sensitive bad
smell appearing more frequently in the accounting domain.

We believe that the high frequency of Large Class in
the accounting domain is due the number of calculations
done, what makes the class to have an excessive code size.
In fact,by looking at the source code, we identified a high
number of calculations within a single class, such as di↵erent
kinds of fees and charges.

As for Large class, the same procedure was done for
Long Method and Long Parameter List. However, we
have the method as the entity now. In Figure 6, we can
observe that long methods occur more frequently in ac-
counting domain being present in almost 1.8% of all meth-
ods. Next, we have health and e-commerce domains having
a frequency of 1.2% and 0.9%, respectively. Restaurant has
the lowest value, about 0.6% of occurrence of long meth-
ods among the methods of the systems. These numbers may
indicate that Long Method is a domain-sensitive bad smell
since it appears more frequently in accounting and health
system than in others, what is in line with the frequency
analysis by systems presented in Section 4.2.

Figure 6: Frequency of Long Method and Long Pa-
rameter List in Domains by Entity

Long Methods tend to be common in accounting sys-
tems since, as we have already seen, Large Classes are
also very common due to the great number of calculations.
These calculations are done within the methods, what makes
them very large in code size and also makes them to con-
centrate the behavior of the class.
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  Long Parameter List occurs more frequently in health
systems with a percentage of 0.6%, followed by e-commerce
and accounting. We can note that the restaurant domain
does not have any occurrence of Long Parameter List, as
can be verified by the frequency analysis by systems (Section
4.2). The divergence between the frequencies of occurrence
within the methods in di↵erent domains suggest that Long
Parameter List is also a domain-sensitive bad smell being
more common in the health domain.

Health systems usually take into account more variables
than systems from other domains since they work with data
from patient, health history, diagnostics and even finances
within this environment. Therefore, it is expected that meth-
ods from the health domain need many parameters to work
with.

For the other two bad smells, namely Dead Code and
Switch Statements, we do not have an entity associated
to them. Therefore, we found suitable to analyze how they
are distributed among the domains per KLOC, as we can
observe in Figure 7. We can see that five Dead Code in-
stances can be found at every KLOC of accounting systems,
being this value the greatest among all domains. Restaurant
has almost 3 smells per KLOC while e-commerce and health
domains present about 2Dead Code per KLOC. This infor-
mation analyzed by itself may indicate that Dead Code is
a domain-sensitive smell being more frequent in accounting
systems.

Figure 7: Frequency of Dead Code and Switch
Statements in Domains by Entity

As we can observe,there is not a great di↵erence of Dead
Code occurrence among all the domains but it is still more
frequent in accounting systems. This is expected since bad
smells related to code size such as Large Class and Long
Method are very common in this domain and then we can
have many parts of the code that are no longer used, char-
acterizing the Dead Code.

By looking at Switch Statements, we see values much
smaller than forDead Code. In fact, e-commerce has about
0.31 Switch Statements per KLOC while restaurant and
accounting have even smaller number of occurrences (0.09
and 0.01, respectively). Health systems do not present any
Switch Statement smell, as already identified in Figure 4.
Since the number of occurrence of Switch Statement is
very low and it does not have a significant di↵erence among
the domains, we cannot infer that this smell is domain-
sensitive by looking at the frequency analysis by entity.

4.4 Joint Frequency by System and Frequency
by Entity Analysis

This section presents a broader analysis of the frequency
from the perspective of systems and entities aiming at sum-
marizing our answers to our research questions (Section 3.1).
Table 5 presents an overview of frequency by system and by
entity for each bad smell in the four analyzed domains. We
define three labels to identify whether a bad smell is pos-
sibly sensitive or independent of the software domain. The
label âĂIJyâĂİ means that the bad smell is more common
in a domain than in others. Similarly, the label âĂIJ(y)âĂİ
indicates that the bad smell seems to be more common in a
domain (but this relationship is not as strong as that indi-
cated by “y”). We use the label âĂIJnâĂİ to indicate that
we could not find any evidence to conclude whether the bad
smell is sensitive or independent of the software domain.
Columns of Table 5 identifies the six bad smells: Large
Class (LC), Long Method (LM), Long Parameter List
(LPL), Switch Statements (SS), Dead Code (DC), and
Comments (C).

Table 5: Bad Smell Classification per Domain
Frequency by

Systems LC LM LPL SS DC C

Accounting Y Y n n n n
E-commerce n (y) n (Y) (y) n

Health n (Y) (Y) n n n
Restaurant n n n (y) n n

Frequency by
Entity LC LM LPL SS DC C

Accounting Y Y n n y n
E-commerce n n n (Y) n n

Health n (Y) (Y) n n n
Restaurant n n n n (y) n

RQ1 What are the most frequent bad smells in each software
domain?

In order to answer Research Question 1, we used bold
text in Table 5 to identify similar results with respect to
the frequency by system and the frequency by entity anal-
yses. For instance, both the frequency by system and by
entity analyses suggest that Large Class is more common
in accounting systems than in other domains. Therefore, we
use bold text in the respective cells. Taking data in Table 5
into account, we summarize our answer to RQ1 as follows.

Answering RQ1. The most frequent bad smells in
the account domain are Large Class and Long Method.
The most frequent bad smell in the e-commerce domain
seems to be Switch Statements. The most frequent
bad smell in health systems seems to be Long Method
and Long Parameter List. We could not conclude
on the most frequent bad smells in the restaurant do-
main.

RQ2 What are the domain-independent bad smells?

Table 5 also supports the identification of domain inde-
pendent bad smells. Once we have identified the domain-
sensitive bad smells, the others are considered domain inde-
pendent. In other words, the bad smells that are more com-
mon in a domain are the domain-sensitive ones. Considering
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  only the cases of agreement between both frequency by sys-
tem and by entity, we conclude that Large Class, Long
Method, Long Parameter List, and Switch State-
ments are domain-sensitive bad smells. Therefore, a brief
answer to RQ2 can be presented as follows.

Answering RQ2. According to our analysis, the domain-
independent bad smells are Dead Code and Com-
ments since they are uniformly distributed within the
systems from all analyzed domains.

5. THREATS TO VALIDITY
The focus on this work was to detect and analyze the most

common bad smells in specific domains of information sys-
tems. In the planning and conduction of this study, some
threats may have a↵ected the validity of our research find-
ings. The main issues that threaten the validity of this work
are presented and discussed below.

Internal Validity. We identified the following threats to
the internal validity: selected domains and key word search
strings. We argue that the selected domains are representa-
tive, given that they are well-defined in terms of a diversity
of recurrent requirements (e.g., user and product manage-
ment). Therefore, we believe that di↵erences in implemen-
tation might reflect in valid varying frequency of bad smells
among systems of distinctive domains. Another threat is
the reliance on the key word search strings for selecting the
initial set of systems in each domain. We cannot ensure
that the GitHub search facilities return all relevant systems
of each domain. However, we could observe that the search
process was able to return systems that we consider relevant
to our research questions.

Construction and Conclusion Validity. Threats to
the validity also reside on how we have collected and in-
terpreted the results. To avoid problem in data collection,
we rely on the default configuration of PMD to automati-
cally detect bad smells. It makes the detection process easy
and repeatable. From the perspective of conclusion validity,
di↵erent interpretations of the results may also represent a
threat to the study validity.

External Validity. The major risk here is related to the
limitation on the selected systems. First, it is not possible
to ensure that they reflect the best samples of the recurrent
practice. To reduce this risk, we proceed by selecting sys-
tems from GitHub based on the ranking of starred systems.
Stars are a meaningful measure for repository popularity,
and they may support the selection of relevant and high-
quality systems for study. We also excluded systems with
less than 1000 lines of code (LOC) because we considered
them simple toy examples. Besides, the sample size might be
itself another threat to the external validity of the study. We
have selected 52 systems from di↵erent domains. However,
this decision allowed us to obtain more consistent results
that could be interpreted in this specific context. Neverthe-
less, additional replications are necessary to determine if our
findings can be generalized to other domains and systems.

6. RELATED WORK
Studies have investigated bad smells in specific domains

[4, 8, 19]. For instance, Fontana and colleagues [5] perform
an analysis on the impact of bad smells in di↵erent domains.
Their goal is to identify the most frequent smells in informa-
tion system domains and to characterize domains with more

smells. The authors analyzed 16 bad smells in 68 systems
from Qualitas Corpus [21]. They also tried to establish a
correlation between bad smells and software quality metrics.
Similar to our results, Fontana and colleagues [5] observed
that Large Class and Long Method are some of the most
common bad smells in general. On the other hand, with re-
spect to bad smells and the domains, they have not observed
significant di↵erences among bad smells.

Another related paper, Reis et al. [3] conducted an empir-
ical study with 118 Java systems from 6 information system
domains and 7 bad smells. Their goal is to investigate if the
domain has a significant impact on the occurrence of bad
smells. They observed that most bad smells do not depend
on the software domain, with the exception of Duplicated
Code. For this bad smell, they showed that its incidence in
Home & Education domain was superior to the other do-
mains. Our study di↵ers from Reis research [3] in several
ways. First, we rely on PMD tool while Reis used JDeodor-
ant and CodePro AnalytiX. The target systems and domains
analyzed in both studies are also di↵erent. Therefore, our
findings complement the results of Reis and colleagues [3].

Guo et al. [8] also investigated the relations of bad smells
and information system domains. However, their focus is on
detection rules for bad smells based on software metrics. In
other words, they aim to make code smell definitions more
accurate and actionable for software developers by tailoring
the bad smell definitions to include domain-specific informa-
tion. Guo and colleagues [8] then enhance a detection tool
(CodeVizard) with refinements in the bad smell detections
aiming at including domain-specific factors.

In summary, our work follows up previous studies in the
investigation of bad smells in information system domains.
However our study has several di↵erences form the previous
ones. We use di↵erent domains in comparison to past works
and di↵erent bad smells. We also perform an in-deep analy-
sis of the occurrence of bad smells within the domains, since
we do an analysis of frequency by entity, such as classes and
methods. Finally, We categorize the domain-sensitive and
domain-independent bad smells in four information system
domains.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed the identification of domain-

sensitive and domain-independent bad smells using PMD
tool for analyze analyzing the frequency by systems and by
entities in the following information system domains: ac-
counting, e-commerce, health and restaurant. Our findings
may bring more awareness for developers of the mentioned
software domains and may provide insights to develop more
e�cient bad smells detection tools taking in account the
software domain.

In order to reach our goals, we mined 52 systems from
GitHub and analyzed the occurrence of the following bad
smells: Large Class, Long Method, Long Parameter
List, Switch Statements, Comments, and Dead Code.
We used PMD as a bad smell detection tool to find the bad
smells. Then, we calculated the total percentage of occur-
rence considering all systems together and the percentage of
each bad smell in relation to the total number of systems
within each software domain. Furthermore, we evaluated
the bad smell frequency according to the entity with which
the smell is related to (class, method or KLOC), what pro-
vided us with valuable information about the most and least
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  frequent bad smells.
This study allowed us to identify domain-independent bad

smells whose frequency of occurrence is uniformly distributed
among all domain such as Comments and Dead Code. We
also identified domain-sensitive bad smells that appear more
frequently in certain domains when compared to others, like
Large Class, Long Method, Long Parameter List,
and Switch Statements. Finally, as a suggestion for fu-
ture work in this context, there is the possibility to expand
the amount of systems in each domain as well as to include
other domains. This path can be done by automating the
analysis of the systems and may bring more chance of gener-
alization of the results and the possibility to do a statistical
analysis on the collected data to make the study more reli-
able.
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